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Abstrart- Wavelet analysis is a new method for analyzing t h e  
and frequency contents of signals. We present the Fast Wavelet 
Transform (FWT) implemented using Rwavelets and non-circular 
convolutions in the analysis of Motor Unit Action Potentials 
(MUAPs). This method allows for the fast extraction of localized 
frequency components of MUAPs that may prove to be valuable 
in the early and accurate diagnosis of neuromuscular disorders. 

I. INTRODUCTION 
Structural reorganization of the motor unit, the smallest functional 
unit  of muscle, takes place because of disorders affecting 
peripheral nerve and muscle. Motor unit morphology can be 
studied by recording its electrical activity, the procedure known as 
electromyography (EMG). When using a needle electrode, and 
at slight voluntary contraction, motor unit action potentials 
(MUAPs) are recorded. Features of MUMS extracted in the 
time domain such as duration, amplitude, and the number of 
phases proved to be valuable in differentiating between muscle 
and nerve diseases [l]. On the other hand, it has been 
demonstrated that there is Little to be gained by FE;r based 
MUAP features (21. The objective of this communication is to 
examine how the Fast Wavelet Transform (m may be used to 
extract MUAP features that may be applied as a useful diagnostic 
tool. The potential of wavelet analysis in EMG signal processing 
has also recently been mentioned by [3]. 

D[. THE FAST WAVELET TRANSFORM 
The wavelet transform represents functions as coefficients of 
discrete translations and dilations of a mother wavelet function 
q~ (x) (the discrete dilations and translations are represented by 
I J ~ , ~ ( x )  . If g j , k ( x )  is orthogonal to its discrete dilations and 
translations (represented by gj lk l (x )  where j'*j and k';zk), 
then the wavelet coefficients ( d i )  for a particular funaionf ( x )  
are calculated by taking inner products of f ( x )  with the wavelet 
function v j , k ( x )  (inotherwords, ciz = < f ( x )  , ~ , , ~ ( x )  > where 
d i  is a "detail" coefficient [4]). On the other hand, if the wavelet 
function @,,*  ( x )  is only orthogonal to its dilations, then we use 
a dual wavelet Oj,*(x) to calculate the wavelet coefficients 
(which is now orthogonal to the discrete translations and dilations 
of Qj, , (x )  ). In this case, we call vj ,k(x)  a semi-orthogonal 
wavelet, and we represent all finite energy signals f ( x )  by 

We define the discrete dilations and translations of y(x) by 

In addition, the inner product is defmed as: .- 
< f ( x ) # g j , k ( % )  = If(x)$;,k(x)dx. (3) 

-- 
In traditional signal analysis, a window function is defined such 
that by taking inner products of a signal with the window function 
(as in (3)), the fourier transform of the inner product provides an 
accurate measure of the spectral content of the signal for a certain 
t h e  interval. In contrast, the wavelet function ( x )  is defined 
to posses oscillation so that it localizes the signal and its fourier 
transform directly [4]. Therefore, the amplitude of the detail 
coefficients are used as a measure of frequency content (as 
indexed by j) for a particular time interval (as indexed by k). 

In order to efficiently calculate the wavelet transform (as defmed 
by (l)), we need to break the infinite sums over j and k. First, 
we observe that for j = O  (resolution level = 0), the argument of 
the wavelet function in (2) becomes ( x - k )  which varies over 
the integers for x being an integer. Thus, if we consider our  
signal samples as an array of samples (having an integer index), 
we conclude that we need to pick j = O  to be the resolution level 
of our signal in order to match the arguments of the functions in 
the inner product, see (3). In addition, the length of the array of 
signal samples restricts k to a f ~ t e  interval. Next, we wish to 
calculate the infinite sum over j on the left (for j=-n-1 to --) 
by using a scaling function (x) such that 

Naturally, there is no guarantee that a scaling function cp ( x )  can 
be found so that we can write (4). In fact, we can only write (4) 
when the wavelet function @ ( X I  is def ied  in terms o f q ( x )  
which (the scaling function) generates a Multi-Resolution Analysis 
[4]. Thus, let us assume that (4) is possible and plug (4) into (1) 
to get 

Thus by (S), we have reduced the problem of calculating the FWT 
and the Inverse Wavelet Transform (IWT) as a problem of 
determining { d i )  ( j = O  to -n) and (c;"). As indicated by ( S ) ,  
we can calculate as many resolution levels as we want (indicated 
by ( j = o  to -n), and still be able to perform perfect 
reconstruction. In addition, observe that if we consider the 
wavelet coefficients (d , f l  as representing the "detail" or time- 
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frequency content extracted from the signal, then the (cz) 
represent the "smooth" coefficients which approximate the signal 
(after the "details" have been removed). In addition, due to the 
Multi-Resolution Analysis generated by the scaling function, we 
can calculate and kin) by using the following recursive 
formulas 141 

cJ-1 = (hr*c,') 12 (6)  

dj-l = {gk*ckj} 12 (7) 

Thus, using (6)  and (7) alone we can calculate the FWT (as 
indicated by (5 ) ) ,  if we knew how to calculate {ci}. If (ci) was 
given, then the rest of the coefficients could be calculated by 
simply convolving the IC:) coefficients with the U-4 andig,) 
filters and downsampling (throwing away every other point as 
lndicated by (6) and (7). We can take the {c:) coefficients to 
simply be our signal samples, or we can use projection operators 
that take the signal samples and generate the (c;) coefficients [4]. 
In our case, we use the B-wavelets for which we can use the well- 
known B-splines projection operators for calculating (ci} (the B- 
splines are the scaling functions Q (x) ). Thus, we used the 
Quasi-Interpolator given in [41 to get and then use (6) to 
calculate (c:). 

III. ANALYSIS OF RESUL.'IS 
M U M S  were recorded from the biceps brachii muscle, band-pass 
filtered at 2 Hz to 10 KHz and sampled at 20 KHz with 12 bits 
resolution. The results of the FWT applied to a MUM are 
shown in Fig. 1. Since the beginning and ending of a MUM is 
determined by a rise or fall of the signal amplitude from the zero 
baseline, we assumed that the signal was zero outside the 
interval of our signal samples. Thus, we implemented (6) and (7) 
via non-circular convolutions. This approach provides us with a 
better MUAP signal approximation. 

Note that ( d i )  coefficients for hi& j represent timefrequency 
contents of high frequencies. Similarly, low j values correspond 
to time-frequency contents of low frequencies. In addition, we 
observe that the signal approximation { c l )  coefficients get 
decimated by WO in every stage. Thus, a localized high frequency 
component becomes "critically sampled when in the t h e  interval 
tha t  it occurs, there are no longer enough points in the 
approximation coefficients {til to represent it.  his is very 
vividly shown from the c-l to ch2 and d - 2  projections in Fig. 1. 
The high frequencies in the MUAP main spike are seen removed 
from the c-l coefficients and appear in the d-2  projection. This 
IS demonstrated by the tenfold increase in the d'' wavelet 
coefkients present in the region within the M U M  main spike. 
Similarly, for the next projection the high frequencies present in 
the region of the main spike are seen removed from c - ~  and 
projected to d- ' .  

In conclusion, the FWT makes possible decomposition of MUAPs 
into highly localized time-frequency components that was not 
possible before. This decomposition should be further explored 
to see if it provides additional diagnostic information that may 
have not been apparent in current MUAP analysis techniques. 

iit a 

Fig. 1 M U .  wavelet decomposition. The FWT results are 
shown for the low-pass filter output coefficients c and the band- 
pass output coefficients d J .  The coefficients have been 
normalized to the scale of the original signal. 
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