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ABSTRACT 

We present an overview of AM-FM image analysis 
techniques. Many nonstationary textured images are 
multi-partite, and may be considered to comprise sev- 
eral locally narrowband components. We introduce a 
multi-component AM-FM model useful in describing 
such images, and show that the components may be 
demodulated on a spatially local basis using multi- 
band filtering followed by a computationally efficient 
nonlinear algorithm. We outline practical approaches 
both for estimating the locally dominant image fre- 
quencies and for computing a full AM-FM image rep- 
resentation. Finally, we discuss how the estimated 
frequencies may be used to compute flow lines. 

I. INTRODUCTION 

AM-FM techniques model images with nonlinear 
functions of the form 

Therefore, it becomes desirable to employ multi-com- 
ponent models of the form 

K 

t(x) = CUk(X) exPbvk(x)l. (4) 
k=l 

Real-valued images may be analyzed against the mod- 
els ( l) ,  (4) by using the 2D Hilbert transform to cre- 
ate a complex-valued extension. To estimate a k ( ~ )  
and vpk(x), we analyze the image with a multiband 
filterbank to separate components on a pixel-wise ba- 
sis. For a filter with impulse response gm(x) and Fre- 
quency response Gm(S2) = 3[gm(x)], the filtered com- 
ponent 

t m w  = t(x - P)Qm(P)dP ( 5 )  J,. 
may be demodulated using the approximate algorithm 

11. DOMINANT COMPONENT ANALYSIS 
ities. AM-FM modeling is most useful for treating 
images that may be decomposed into locally coher- 
ent  components,-each admitting modulating functions 

and vp(x) which smooth in the Of 
ing bounded Sobolev norms. 

modulated using the local nonlinear algorithm 

Many images arising from natural physical, chem- 
ical, biological, and erosive processes contain textured 
regions or quasi-repetitive structures that can be de- 
scribed by the emergent frequencies that dominate the 
local image spectrum. Examples include crystals, rock 
strata, a zebra’s stripes, wind patterns in sand, and 

4x1 = It(x)l, (2) wood grains. Perspective distortion may also give rise 

(3) 
to nonstationary, quasi-regular patterns. Often, it is 
desirable to characterize the orientation, roughness, 
or flow of such patterns by estimating the dominant 

which is exact for any  complex AM-FM component [l]. local frequencies. 
Although any image may be exactly represented In this section we describe an analysis technique 

by a single AM-FM component, often no such rep- known as dominant component analysis which, for an 
resentation will admit smooth modulating functions. image of the form (4), will estimate the quantities 

Vp(x) and a(x) of the locally dominant component; 
the frequencies V@(x) then estimate the emergent im- This research was supported in part by a grant from the 

Texas Advanced Research Projects Agency and by the Air 
Force Office of Scientific Research, Air Force Systems Com- age frequencies. A Of the approach 
mand, USAF, under grant number F49620-93-1-0307. is shown in Figure 1, where the image t(x) is ana- 
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A sing1e component Of the form (l) may be de- 
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Figure 1: Block diagram of the dominant component 
technique. The demodulation algorithm ( 6 ) ,  (7) is 
performed in the blocks marked ESA. 

lyzed with an M-channel multiband bank of Gabor 
filters arranged in a wavelet-like tesselation [2]. The 
filtered demodulation algorithm ( 6 ) ,  (7) is applied to 
the response of each channel at each pixel. Estimates 
Vq(x), a(x) for the locally dominant component are 
taken from the channel maximizing the filter selection 
criterion 

Figure 2 shows dominant component analysis of 
two Brodatz images. The image rufia is shown in 
Figure 2(a). The emergent frequency estimates are 
shown in the (b) part of the figure, where arrow length 
is proportional to the instantaneous period and the 
arrow heads point in the direction of V@(x). Hence 
shorter arrows correspond to high frequencies and im- 
age features of small spatial extent, while longer ar- 
rows correspond to features of larger spatial extent. 
Although this image clearly has a multi-partite na- 
ture, the strips oriented with the main antidiagonal 
are particularly strong throughout the image, and this 
is captured in the emergent frequency estimates. The 
image tree is shown in Figure 2(c). The emergent 
frequency estimates are shown in the (d) part of the 
figure, where the lengths of the arrows are squared 
to accentuate the differences between the highest and 
lowest frequency estimates. 

111. MULTI-COMPONENT AM-FM 
REPRESENTATION 

In this section, we outline a practical approach for 
computing the multi-component AM-FM representa- 
tion 

of an M-column by N-row K-component discrete- 
domain image modeled as samples of (4). This re- 

Figure 2: Dominant component analysis. (a) rufia. 
(b) Needle diagram showing Vp(x) for rufia. (c) tree. 
(d) Needle diagram showing Vp(x) for tree 

Figure 3: Block diagram of the approach for comput- 
ing Multi-component AM-FM representations. 

quires simultaneously estimating the modulating func- 
tions of all components. Figure 3 shows a block dia- 
gram of the computational paradigm. As before, com- 
ponents are isolated on a spatio-spectrally local basis 
using a multiband filterbank. Subsequent to filtering, 
the demodulation algorithm (6), (7) is applied to each 
channel response. The track processor in Figure 3 as- 
similates the estimates obtained from each channel 
into estimates for each component to obtain the rep- 
resentation (9). In Sections IIIA - IIIC. we describe a 
novel track processor based on Kalman filters derived 
from a statistical state-space component model. 

A. Statistical Component Model 

Assume an image of the form (4), and define p" (x) 
- a  - z'p(x). Introduce an artificial temporal causality 
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relationship between points in the sampled image do- 
main by mapping them to a 1D lattice according to a 
path function 0 : x I---) k, k E N. 0 maps the modu- 
lating function of a component according to, e.g. a(x) 
t--$ a(k). Let p denote continuous arc length along 
0, and use the notation 

0 

-1 1 0 0 0 0 -  
0 1 0 0 0 0  
0 0 1 1 0 0  
0 0 0 1 0 0  
0 0 0 0 1 1  

.o 0 0 0 0 1- 

to indicate the restriction to the discrete 1D lattice 
of the derivative of a modulating function taken with 
respect to p. Then each modulating function may be 
expanded in a first-order Taylor series about a lattice 
point k, e.g. 

q"(k + 1) = cp"(k) + cp"'(k) 

Likewise, the first-order derivatives of the modulat- 
ing functions may be expanded in zeroth-order Taylor 
series: 

k+l 8 2  
cp"'(k + 1) = cp"W + 1 ap,cp"(P)dP. (12) 

We consider that a(x) and cp(x) are independent, ho- 
mogeneous m.s. differentiable random fields, and that 
cp(x) is quadrant symmetric [3]. Then we model the 
Taylor series integrals associated with (11) by three 
noise processes ua(k) ,  uvz (k), and uvy(k). The Tay- 
lor series integrals associated with (12) are modeled 
by noise processes va(k ) ,  vv,(k), and vvy(k). Col- 
lectively, we refer to these six noise processes as the 
modulation accelerations, or M A  's, since they involve 
local averages of the second derivatives of the mod- 
ulating functions. Then, the series (ll), (12) for all 
three modulating functions may be written together 
in a canonical state-variable form to obtain the sta- 
tistical state-space component model 

+[ua(k> va(k)  uv,(k) vv,(k) uvy(k) vvy(k)]T(13) 

We model estimation errors in the algorithm (6), (7) 
by noise processes n,(k) ,  n v z ( k ) ,  and nvg(k), called 
the measurement noises, or MN's. This results in the 
observation equation 

We assume that the covariance structures of the sec- 
ond derivatives of the modulating functions are highly 
spatially localized, so that they behave impulsively 
in both the vertical and horizontal directions when 
viewed at the scale of the spatial sampling lattice. 
Then, it is straightforward to compute the following 
covariances between the MA's: 

1 
E[ua(k)ua(j)l = ,dm - j ) ,  (15) 

E[%(k)va(j)l = a X 4 k  - A ,  (16) 
E[ua(k)va(j)]  = ? ~ % t , d ( k  1 - j ) .  (17) 

Expressions for Eb," (kb$OZ (dl ,  Eb,, (+$Oy (AI, 
E[%" (Nvv, (AI, E[.$OY (+$OY ( d l 7  E[%" (wvv" (j)I, 
and E[uvy(k)vvy(j)] are analogous in form. The re- 
maining twelve MA covariance functions are all iden- 
tically zero. 

Analytical characterization of the MN moments 
and of the joint moments between the MN's and MA's 
is difficult. However, in practice we have found that 
when dealing with locally coherent images, the MN 
moments are normally quite small with relation to the 
magnitudes of the modulating functions themselves. 
Therefore, within the scope of this paper we shall as- 
sume that the MN's are jointly uncorrelated and also 
uncorrelated with the MA's. 

B. Component Track Filter 

In the previous section, we modeled the estimated 
modulating functions of a component as noisy obser- 
vations of an affine function of the state vector of 
a finite-dimensional linear system driven by uncorre- 
lated noise. Hence, the MMSE optimal track proces- 
sor involves Kalman filters. Due to the block-diagonal 
structure of the state transition matrix in (13), the 
system modes corresponding to the amplitude modu- 
lation and the two components of the frequency mod- 
ulation may be decoupled, resulting in three inde- 
pendent second-order systems. We use independent 
Kalman filters to track each one. 

The explicit recursive formulation for the optimal 
amplitude estimates Z(klk) is 

The optimal frequency estimators are analogous in 
form, and involve gain sequences av,(k), P,,(k), 
av (k), and Pvy(k). Formulations for a a ( k ) ,  ,&(k) 
folfow from recursive expressions for the state vector 
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error covariance matrices associated with the decou- 
pled systems. This track processor is unbiased and 
optimal in the MMSE sense. 

C. New Track Starts 

At each point i in the path 13, we start new tracks 
using the observations 2(i) and V@(i) obtained from 
channels which maximize the quantity 

where &(i) and O&(i) are the amplitude and fre- 
quency estimates obtained from filterbank channel n, 
provided that these observations do not associate with 
an already existing track. Note that the quantity 
IGn(S2)l / maxn IGn(S2)I lies between zero and one, 
and increases as S2 moves closer to the center fre- 
quency of the channel. Hence, for a given component, 
tracking will be initialized using the channel whose 
center frequency is closest to the instantaneous fre- 
quency of the component, affording improved immu- 
nity against out-of-band information through an en- 
hanced SNR. 

The amplitude track is initialized at pixel i using 
channel n by taking 

and 
Z(Ol0) = S,(i) - Gn(i - 1). (23) 

Similar procedures are used to initialize the frequency 
tracks. Typically, for some small number L,  new 
tracks are started at each pixel using the amplitude 
and frequency observations from the L channels hav- 
ing the largest values of Q(n) from among those chan- 
nels producing observations that do not associate with 
an already existing track. In an image region where K 
components are present, this scheme guarantees that 
all components will be tracked by the rK/Llth pixel 
of the region (under the assumption that at most one 
component dominates the local frequency spectrum of 
each channel at each pixel). 

D. Multi-Component Example 

In Figure 4 we compute the representation (9) 
of the synthetically generated, two-component non- 
stationary image shown in Figure 4(a). True val- 
ues for components C1 and C2 are shown in Fig- 
ures 4(b) and (c), respectively. The presence of two 
components was correctly identified by the track pro- 
cessor. The amplitude estimates for Cl are shown 
in Figure 4(d), while the horizontal and vertical fre- 
quency estimates are given in the (e) and (f) parts 
of the figure, respectively. For C2, the amplitude, 
horizontal frequency, and vertical frequency estimates 

are given in the (g), (h), and (i) parts of the fig- 
ure. Collectively, Figures 4(d) - (i) constitute the 
multi-component AM-FM representation of the im- 
age. Note how smooth the AM-FM representation is, 
despite the fact that there are rapid variations in the 
image. The estimated quantities are in near perfect 
agreement with the true values, except for a small re- 
gion of oscillatory behavior in C1 where the vertical 
frequency approaches DC. 

IV. A STOCHASTIC FLUID MODEL 

In this section, we use the emergent frequency vec- 
tors to develop a stochastic fluid model which provides 
an interpretation of frequency modulation. Here, we 
make an analogy between emergent frequency vectors 
and particle velocities [4]. In [4], this analogy lead 
to a deterministic fluid model that was used to ana- 
lyze grain variations in a woodgrain texture. In the 
stochastic fluid model considered here, we show that 
the frequency modulation process can be described in 
terms of two independent free Brownian motion mod- 
els [5]. We show that particle trajectories, or flow 
lines, are samples of Brownian motions. Frequency 
modulation is analyzed in terms of the parameters of 
Brownian motions. 

We use the notation 0 to denote the emergent fre- 
quency vector Vq(x). We consider 0 to be a velocity 
field, and x(t)  to be a particle trajectory of 0 [4]. For 
a continuously differentiable velocity field, we have by 
the chain rule that 

Since 0 is also the tangent to the trajectory x, we 
have that 0’ (x(t))  = F(x) 0 (x( t ) ) ,  where F is the 
emergent frequency gradient tensor [4]. Hence, (24) 
describes the deterministic fluid model that was con- 
sidered in [4]. We define a stochastic fluid model by 
incorporating a normal white noise process w (x(t)) 
to account for random disturbances along the particle 
trajectory [5]: 

0’ (x(t)> = F(x(t)) O(x(t)) + w (x(t)> (25) 

In what follows, for slowly-varying F, we show that 
(25) can be modeled by two independent free Brown- 
ian motions (as in [5]). 

Next, we address certain estimation issues as they 
relate to (25). The emergent frequency vector esti- 
mates must be extended to four quadrants, as was 
done in [4]. We set 0 = fVp(x),  choosing the sign 
to satisfy 0.0’ < 0. This ensures that the emergent 
frequency vector magnitude will decrease along flow 
lines. In addition, we note that for a true gradient 
field, the emergent frequency gradient tensor must be 
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symmetric. Hence, we take f (d2$/dxdy +d2$/dydx) 
as the estimate for both dOl/dx and dOz/dy. 

Since the frequency gradient tensor is symmetric, 
F may always be expressed in terms of its eigenvalue- 
eigenvector decomposition, F = ETAE. Express- 
ing the emergent frequency vector and random dis- 
turbance in terms of the eigenvector coordinate sys- 
tem, we have z = EO and wn = Ew. More impor- 
tantly, we make the approximation z’ M EO’, which is 
valid for IldE/dtll small. It can be shown that, along 
flow lines, the approximation holds well when the unit 
eigenvectors ei rotate slowly [4]. In view of this, (25) 
may be rewritten as 

.z; = X. ZZ( ’ + (w& i = 1, 2, (26) 

where X i  are the eigenvalues of F. 
We are now ready to provide physical interpreta- 

tions for all the components of the model. First, we 
note that (26) describes two independent free Brown- 
ian motions [5]. Each flow line corresponds to a sam- 
ple from an ensemble of Brownian motions. Here, zi 
denotes the particle velocity (emergent frequency vec- 
tor component) of a small particle moving in the di- 
rection of the eigenvector ei. During the motion, each 
particle velocity component zi is reduced by friction 
forces. In our model, the friction coefficients are given 
by the negative eigenvalues Xi. In addition, the mo- 
tion is affected by the random collision forces ( w ~ ) ~ .  
Furthermore, (w,)~ is a normal white noise, since the 
collision forces along the motion are uncorrelated and 
the forces are normally distributed (with zero mean). 
The variance is directly proportional to the friction 
coefficient and the temperature of the medium. 

zero. This example demonstrates that the model is 
robust against noise in the frequency estimates. 

V. CONCLUSION 

In this paper, we demonstrated how complicated, 
nonstationary images may be modeled using multi- 
component AM-FM functions. We discussed multi- 
band filtering techniques for isolating the components 
on a spatio-spectrally localized basis, and presented 
an algorithm for demodulating the filtered compo- 
nents. Our approach bears similarities to processing 
known to obcur in biological vision systems, in that 
the information content of an image is characterized 
by smoothly varying modulations occurring in a small 
number of frequency and orientation selective chan- 
nels. 

We gave practical computational techniques for 
estimating the emergent frequencies that dominate 
the local image spectrum and for computing multi- 
component AM-FM image representations. There are 
two main advantages in doing this. First, compli- 
cated nonstationary images may be represented by a 
small number of smoothly varying modulating func- 
tions which can be transformed to a spatially efficient 
form. Second, AM-FM representations naturally fa- 
cilitate analysis in terms of the nonstationarities. Fi- 
nally, we discussed how the estimated frequency mod- 
ulations may be used to compute flow lines which 
characterize the orientation and flow of textured pat- 
terns. 
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Figure 4: Multi-component AM-FM representation. (a) Nonstationary two-component synthetic image. 
(b) Component C1. (c) Component C2. (d) El(k). (e) g(k). (f) z(k). (g) &(k). (h) g(k). (i) z(k). 
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Figure 5:  The stochastic fluid model (27), (28). (a) A typical flow line tracking example. (b) A collection of flow 
lines over the image plane. Both the estimated and the actual flow lines are shown. In both figures, estimated 
flow lines are terminated by the symbol '0'. For the simulation, fifty values uniformly sampled between -0.1 
and -0.01 where used for the eignevalues Xi .  For the Brownian motion, each component of w, had a variance of 
uw,, = n/100, and for the observation process each component of v had a variance of = 7 r / l O .  The estimated 
state-transition-matrix & for the Kalman filter tracker was modeled by Ak plus uncorrelated noise. Each 
component of Ak was normally distributed about the true value with a variance of UA = 0.05. For each noise 
process, the Kalman tracker utelized estimated variances which where five times the true values. 
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