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ABSTRACT 

COPERM is a novel paradigm for energy compaction and 
signal compression, whose foundation is a simple but pow- 
erful idea: any signal can be transformed to resemble a more 
desirable signal from a class of “target” signals, by means 
of a suitable permutation of its samples. The approach is 
well-suited for transform domain energy compaction prior 
to transform-domain compression of persistent broadband 
signals. The associated optimal permutation precoders are 
surprisingly simple, and the permutation precoding over- 
head can be made modest - resulting in improved overall 
rate-distortion performance. 

1. INTRODUCTION 

Energy compaction is an important first step in almost all 
compression techniques [ 11. Prediction and/or transforma- 
tion to some other more suitable domain are the two pre- 
vailing techniques for energy compaction. Both of these 
energy-compaction techniques are not very efficient in com- 
pacting the energy of persistent broadband signals. These 
signals occupy a wide bandwidth in the frequency domain; 
and exhibit fast and persistent variation in the time domain. 
For such signals, wavelet analysis is an attractive option. In 
this paper, we introduce another attractive option, which is, 
in fact, closely related to optimal signal-adaptive AM-FM 
signal analysis and synthesis. In particular, we propose a 
novel technique for energy compaction of broadband sig- 
nals via optimal permutation. This permutation is matched 
to a particular transform-domain codec, in the sense that its 
goal is to transform the input into a signal that is customized 
to fit the strengths of the transform-domain codec. 
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We present some basic theoretical results that lead to 
fast computational algorithms, and illustrate key concepts 
by using l-D examples, as well as designing a hybrid im- 
age codec that uses JPEG in conjunction with COPERM pre 
- processing to improve on the rate-distortion performance 
of JPEG in the high-quality operating region. This region 
is important in critical compression applications (e.g., in 
biomedicine). 

The idea of using permutations for (stand-alone) source 
coding has been investigated in the mid 60’s to early 80’s 
by Dunn [2], and Berger et al. [3], motivated from a chan- 
nel coding proposal of Slepian [4]. Alternative raster scan- 
orders (e.g., Hilbert curve) in lossless image coding can be 
viewed as local prediction-error energy-compacting permu- 
tations [5]. These are the closest pieces of prior work. Ref- 
erences [6, 71 report on some other interesting signal pro- 
cessing applications of permutations. 

2. ,MAINIDEA 

We introduce the main idea using the Discrete Fourier Trans- 
form (DFT). The DFT is closely related to the Discrete Co- 
sine Transform (DCT), which is heavily used as a pre - 
processing energy - compaction block in many transform- 
domain codecs, like JPEG [l]. These codecs also incor- 
porate quantization and entropy encoding blocks. We tem- 
porarily leave these blocks out of consideration (they too 
can be accounted for), and focus on energy-compaction. 

What is the best possible DFT input signal from an en- 
ergy compaction viewpoint? Clearly, it is’ one of the given 
DFT basis signals. Many real-life signals are smooth, thus 
having most of their energy in the low-passband of the 
spectrum: the DFT is quite effective in compacting the en- 
ergy of such signals. Actually, it is quite effective in com- 
pacting the energy of any narrowband signal. regardless of 
it being low-pass or band-pass. 

‘Modulo scaling by a (potentially complex) number. of course. 
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The flip-side of this is that the DFT is a poor choice 
for compacting the energy of broadband signals, e.g., tex- 
tures, fingerprints, noise, fractals, or certain digital mo 
tion signals. For such signals, wavelet analysis often IS an 
attractive option. In this section, we introduce another at- 
tractive option. Suppose we are'given such a broadband sig- 
nal. Is it possible to somehow transform this signal in such 
a way that: (i) The transformed signal is as narrowband as 
possible, ideally one of the given DFT basis functions; (ii) 
The associated transformation is invertible, so that we may 

signal from the transformed signal; (iii) 
can be encoded at a moderate coding 

cost (some coding overhead is clearly necessary; the idea is 
to come up with an improved overall balance); and (iv) The 
forward and inverse transforms are easy to construct, and 
UPPLY? 

For the sake of simplicity, and with 
let us temporarily restrict our attention to so-called consrant 
modulus signals. The reason for temporarily restricting our- 
selves to this class of signals is not technical but pedagog- 
ical: it allows us to make the first argument using the Dis- 
crete Fourier Transform, a very familiar tool. The argument 
carries through for real-valued signals, and certain complex 
signals as well. 

Constant modulus signals are complex-valued signals 
whose magnitude remains constant over time, and only their 
angle changes: a constant modulus signal is any signal that 
can be written as z(n) = Aeja(n), where A is a constant, 
cy(.) is a real-valued function, and j is the square root of - 1. 
Note that the anglefunction of s(n) is not a(n), but rather 
a(n) modulo 27~. 

Figure l(a) depicts the angle function of a broadband 
constant-modulus signal; Figure 1 (d) depicts the magnitude 
of the DFT of this signal. Figure l(e) depicts the magnitude 
of the DFT of a suitable permutation of the given constant- 
modulus signal: notice that the permuted signal essentially 
consists of a single DFT harmonic (there exist a few more 
negligible but nonzero DFT coelrficients which are not vis- 
ible in this plot). Figure l(b) depcts the angle 
the reconstructed signal, obtained by setting a1 
DFT coefficients of the permuted signal to zero 
the inverse DFT, and then de-permuting using the inverse 
permutation. This effectively re-creates the angle function 
of the original constant-modulus signal. Figure l(c) depicts 
the error between the angle functions of the original sig- 
nal and the reconstructed signal (SNR is about 100dB). Of 

ermutation. This 

0 

lo4 

0 

sample. Thus it appears that N should not be too big (actu- 
ally: if the signal is digital, then Zog(N) should be strictly 
less than the number of bits used to represent a signal sam- 
ple in order to achieve any compression gain at all). Of 
course, if the signal is real-valued this is less of an issue. 
On the other hand, N should not be too small, for other- 
wise even the optimal matching is often not very accurate 
in absolute terms. It appears then that the choice of N ex- 
hibits an interesting (and unusual) trade-off. However, as 
we will soon see, there is an elegant way to circumvent the 
restriction of having to work with relatively small N ,  even 
for digital data. 

How does one find such a k t a b l e  permutation? . 
Recall that the permutation should ideally transform the 

given signal to a DFT basis function. We cannot insist on 
exact transformation, for there exist signals which cannot 
be synthesized by permutation of a DFT basis function. It 
seems natural, then, to pose the following problem: Given a 
constant modulus signal, find a permutation that optimally 
matches the angle function of the permuted signal to the an- 
gle function of some DFT basis signal, i.e., best matches the 
angle function of the permuted signal to (%kn)mod(27r), 
for the best possible k E (0, . . . , N - 1}, in a Least Squares 
(LS) sense. 

Let us use the letters &,e, T to denote permutations of 
the integers between 0 and N - 1. Let Ci be the group of 
all such permutations (1G1 = N ! ) .  In concise mathematical 
terms, the problem can be stated as follows: Given the angle 
function, p ( n ) ,  of a constant element modulus input signal, 
find r* E E to minimize the following minimum (double 
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2.1. Some Technical Results 

Given a real-valued sequence p(n) of length N ,  we will 
say that + is a sorting permutation for p(n) if the sequence 
p(+(n))  is sorted in increasing order (sorting permutations 
are not necessarily unique, because of the possible existence 
of ties: two or more elements may have exactly the same 
value). 

Theorem 1 (Vac of a result of [4], [31) Given two real se- 
quences oflength N ,  p ( n )  and a(n), consider the following 
pmblem: 

N-1 

minimize : lp(r(n)) - cy[n)l2 

subject to : T E G 
Let 4, 6 be sorting permutations for  p(n), ~ ( n )  respec- 
tively. Then an optimum T is given by r(6(n)) = 4(n), V n. 

n=O 

Sorting is, at worst, an O(NZog(N)) operation, hence an 
optimum T can be found in O(NZog(N)) operations. It is 
now clear how to solve the optimization problem in Equa- 
tion (I): for fixed k, invoke the above Theorem to solve for 
the best T for the given k .  This takes O(NZog(N)) opera- 
tions. Repeat for all N different k’s and pick the best such 
T (for the best k) as the final answer. The overall process 
entails O(N210g(N)) operations. 

There exists an interesting alternative to the above The- 
orem for the special case of finite-alphabet sequences: 

Theorem 2 (Proof: [SI) Consider twofinite - alphabet se- 
quences of length iV, p(n)  and ty(n). Assume that the al- 
phabets a r e f i e d  and known in advance (this can always be 
assumed for  the “target” sequence, a(.)). Let h, and h, 
be the histograms of the two sequences over the respective 
alphabets; and AI = maz(Zength(h,), Zength(h,)) (i.e., 
equal to the size of the largest alphabet). Then: 

N-1  

minim~m,Eg C ( p ( ~ ( 1 ~ ) )  - a(n)12 = f (h,, ha)  = f *  
n=O 

and f * can be computed from h, and h, in O ( M )  opera- 
tions. 

In light of this result, an alternative approach emerges: given 
a finite-alphabet input sequence and a number of target se- 
quences, find the best target sequence by (i) computing the 
histogram of the input sequence in O ( N )  operations (the 
corresponding computation for the target sequences need 
only be done once and off-line); and (ii) select the best tar- 
get sequence by computing the associated f* metrics, as 
above, at a complexity cost of O ( M )  operations each. In 
the end, one only needs one sorting to find the optimum 

match. This being a finite-alphabet sorting operation, it fol- 
lows that the overall runtime complexity of this process is 
O ( N  + T x M + rV) = O(N + T x M )  operations, where 
T is the number of target sequences, and M is maximum 
alphabet size. This is important for M small relative to N .  

A second example is shown in Figure 2(a)-(f), following 
the same format as Figure 1. As in the first example, just one 
(the strongest) DFT coefficient is sufficient to adequately 
represent the optimally permuted signal! 
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2.2. System Design 

One way to keep search and permutation coding overhead 
costs in check is to exploit the inherent periodicity of, e.g., 
DFI’DCT, basis functions in the time domain. Consider the 
DFT basis function for k = N / 2 .  This function is a binary 
oscillation: (-l)n. When sorted, it gives two “buckets”: 
any sample of the original sequence may fall in one of the 
two buckets; exactly where it falls within a given bucket 
is irrelevant in terms of LS fit. Consequently, a single bit 
index per signal sample is sufficient to determine an op- 
timal signal permutation for the given k. In general, one 
needs Zog(N/k) bits per signal sample to represent an op- 
timal permutation for k = 1,2,4, e - e ,  N / 2 .  Restricting 
the search to these frequencies also lowers complexity to 

We have designed a coder that consists of an energy- 
compaction front-end using Theorems 1, 2 in conjunction 
with 1-D DCT for energy compaction, the above bucket- 
ing scheme for effectively reducing the permutation coding 
overhead, and JPEG for compressing the permuted image. 
The details can be found in [8]. The decision on what is 
the best IC for a given image block (including whether or 
not to permute at all) is based on minimizing cost(k) = 
Zog(N/k) + X ( l  - R ( k ) ) ,  where X is a trade-off parameter, 

o ~ ~ ( ~ o g ( N ) ) 2 > .  
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and R(k)  is the ratio of the energy of the strongest DCT co- 
efficient of the optimally permuted (for the given I C )  signal, 
divided by total signal energy. 

Consider the 8bpp, 512 x 512 fingerprint image, shown 
in Figure 3. Figure 4 shows the optimally permuted finger- 

Figure 3: 8bpp fingerprint image. 

print image: this is input to the JPEG coder. Notice that 
only blocks which can clearly benefit from permutation are 
actually permuted; optimal permutation effectively trans- 
forms these blocks into almost - harmonic signals, which are 
particularly easy to compress via PEG.  For both schemes 

50 100 150 2W 250 300 350 404 450 500 

Figure 4: Optimally permuted fingerprint image. 

permutation precoding), different rate- 
ed by varying the quality 
codec loses its ground at 

relatively small rates; this is to be expected, due to the over- 
head associated with coding the permutation. However, at 
higher bit rates (high-quality operational region, beyond 3 
bpp, which corresponds to quality factor 2 75 on the JPEG 
quality dial), improved energy compaction more than pays 
for the permutation coding overhead, and the hybrid codec 
wins uniformly over JPEG. For example, at a rate of 3.758 
bpp the hybrid codec provides 35.44 dB’s of PSNR, whereas 
at 3.744 bpp JPEG provides 34.82 dB’s of PSNR. 

3. CONCLUSIONS AND ON-GOING WORK 

We have mentioned that the ideas presented herein have 
close ties to AM-FM signal analysis and synthesis. Indeed, 
our present work has been motivated from the pursuit of 
optimal signal-adaptive FM transforms [ 8 ] .  There exist sev- 
eral promising extensions (e.g., in the direction of optimal 
AM-FM transforms), and these are the subject of on-going 
investigation. 

COPERM decomposes the input signal in two compo- 
nents: a narrowband “unmodulated carrier-like” component, 
and a “noise-like’’ permutation component. Both compo- 
nents individually appear to be inconspicuous transmissions. 
Proper reconstruction requires both components, and is very 
sensitive with respect to the parameters of the unmodulated 
carrier - which are therefore natural candidates for a “key” 
in secure communications of compressed data. 
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