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Abstract - MRI brain images are characterized by 
non-stationary components that make fully automated 
segmentation a challenging task An AM-FM model is 
used to model these non-stationarities. Using the AM- 
FM model, a new, fully automated texture segmentation 
system is used to automatically segment the cerebellum 
from a 3-0 set of MRI brain images. ... . 

I. Introduction 

. The cerebellum segmentation problem is illustrated in 
Figure 1. Given a collection of manually segmented MRI 
images, we seek to use an automated algorithm that uses 
these images to compute a segmentation for a collection 
of new images. To measure the success of the method, all 
images were manually-segmented and this allows us to 
measure the results on the "test" images against the 
ground-truth. 

The automated segmentation algorithm is designed to be: 
(i) translation-invariant, (ii) rotation-invariant, and also 
allow for a simple method for adopting the algorithm for 
(iii) scale-invariance. To model the MRI image, we 
require the use of a non-stationary model that can provide 
a natural representation for strong spatial variations in 
brain structure. In particular, we note the distinct 
directional variation throughout the cerebellum that 
clearly distinguishes it from its background. For constant, 
equal pattern spacing in the cerebellum, we could use a 
constant period sinusoid for representing the image. 
However, to account for the observed spatial variations in 
the pattern periodicity, we use and AM-FM model [ 1-41: 
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where the first summation describes the image over the 
cerebellum, while the second summation describes the 
image over the non-cerebellum regions. We note that at 
any given pixel, only one of the two amplitude functions 
is non-zero. If a pixel belongs to the cerebellum, then the 
cerebellum amplitude is non-zero: ucer (x)+ 0 ,  while the 

non-cerebellum amplitude is zero: anon-cer (x)= 0. 
Conversely, if a pixel is not part of the cerebellum: 
acer ( x )  = 0, anon-cer ( x )  # 0 . Using (l), an arbitrary 
MRI image can be described in terms of the amplitude 
functions: aceer, anon-cer, the phase functions: 

@,,@2,w, ,wz and the AM-FM series coefficients: 

An,m, Bn,= .  To segment the image into cerebellum 
versus non-cerebellum regions, we will only use: 
acer, anon-cer. To estimate these functions, we use 
Dominant Component Analysis (DCA) [l-41. 

The amplitude functions were found to maintain distinct 
values when describing cerebellum structure, as opposed 
to non-cerebellum structure. This is illustrated in Figure 
2, and further explained in Section 11. The AM-FM 
amplitude describes the maximum range between the 
intensity minima and maxima. 
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Using the amplitude, we note that we clearly have: (i) 
translation invariance and (ii) rotation invariance. Scale 
invariance is also given, since scale changes should not 
change the amplitude values. To achieve true scale 
invariance with respect to the shape analysis steps 
following the initial amplitude segmentation steps, we 
simply require that the granulometric size distributions 
for the new, re-scaled images, must be computed using 
the re-scaled version of the generator element (a circle 
with a 3 pixel radius, see Section 11). 

In this research, we did not attempt to develop an 
accurate segmentation algorithm using a single AM-Fh4 
parameter. Instead, an approximate segmentation is 
computed which may be given as input to a more 
accurate method like an active contour method [7]. 

The segmentation algorithm is described in Section 11. In 
Section 111, the results are presented and analyzed. A 
summary of future research work on the subject is also 
given. 

II. Method 

To develop an AM-FM segmentation algorithm, we first 
use the Dominant Component Analysis (DCA) algorithm 
to obtain estimates of the AM-FM amplitude. An analysis 
of the algorithm can be found in [2-4], and it is thus not 
repeated here. Using the amplitude, the basic 
segmentation steps are presented below, and followed by 
an analysis of each step: 

Step 1. Obtain initial segmentation results using 
the estimated pdfs for minimum-cost 
classification. 

Step 2. Apply close operation with a circular 
element of r = 12 pixels to produce 
connected components. 

Step 3. Remove any holes from binary 
segmentation image. 

Step 4. Using the initial segmentation results, 
estimate the noisy granulometry of 
the estimated cerebellum. 

Step 5. Using the noisy and the prediction 
on what the granulometry should be, 
estimate n, the number of openings 
required for removing the noise 
from the image. 

Step 6. Using n, apply the appropriate 
granulometric filter to remove 
noisy regions. 

For minimum-cost classification, we require estimates of: 
(i) p ( l )  the probability that a pixel belongs to the 
cerebellum, (ii) p(2 )  the probability that a pixel is not part 

of the cerebellum, (iii) p(zl1) the conditional probability 
that the pixel amplitude takes on the value L given that it 
is part of the cerebellum, and (iv) p(z(2) the conditional 
probability that the pixel amplitude takes on the value z 
given that it is not part of the cerebellum. For the 
estimates, we compute all the probabilities on a manually 
segmented image and then use the estimates on unseen 
MRI images. We did not perform any averaging of the 
probabilities. Instead, we use probabilities estimated on 
the closest (in space) MRI image. 

Examples of all the probability density functions 
involved are shown in Figure 2. We note that the 
amplitude distribution for the cerebellum is somewhat 
simple. It involves a single peak, and the peak is seen to 
coincide with a minimum in the non-cerebellum 
distribution (see upper-right plot of Figure 2). This 
observation suggests that this range of amplitude values 
can be used to identify pixels associated with the 
cerebellum. Nevertheless, it is also clear from the upper- 
right plot of Figure 2 that un-weighted classification will 
not work since the distribution of the cerebellum values 
remains strictly less than the distribution of the amplitude 
background pixels. This is primarily due to the fact that 
the cerebellum pixels account for less than 15% of the 
total pixels. Hence, p(  1) e 0.15, which implies that p(2)  
= 1-p( 1) > 0.85. To give approximately equal importance 
to the cerebellum pixels, we perform minimum cost 
classification with c = 5,  and classify a pixel as a 
cerebellum pixel if c-p(l)p(zll) > p (  l)p(zll), else 
classify it as background. 

The initial cerebellum segmentation estimate lacks the 
compactness of the actual cerebellum. This motivates 
steps 2 and 3, where isolated regions are connected by a 
morphological close operation, and then all holes are 
removed. Naturally, compactness is not just brought to 
the desired cerebellum pixels, but it is also brought to the 
noisy background pixels. To remove all the noisy 
compact regions due to the close operation, we will 
simply need to apply a morphological open operation 
with a structural element that is of the same size as the 
one used in the close operation. In general, the optimal 
filter is given by: 

M =((((((IoB)o~B)o~B)o~B)...)o~B) 
where the value of n needs to be estimated, o denotes 
the open operation, mB denotes m self-dilations with the 
convex generator element B. For rotational invariance, B 
was taken to be a circular element with a radius of 3 
pixels. For estimating n, we estimate the granulometric 
size distributions: (i) Qes, for what the actual 
cerebellum size distribution is expected to be, and (ii) 
Qhg for the noisy estimate of the cerebellum size 
distribution (see [5,  61 for details). Using these size 
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distributions, we apply a two-step algorithm to estimate 
n. First, for n>3, we compute the first value of n such 
t h a t : d ~ ~ ~ , ( n ) > d ~ ~ ~ ( n ) .  Then, if the value of n 

satisfies @,,(n)>O.8, we set n = 4. The fundamental 
assumption behind the algorithm is that the manually 
segmented cerebellum is large compared to noisy 
structures 'in the MRI segmentation estimate. Hence, the 
small-diameter distribution of noisy structures in the 
image will stay above the estimate of the actual 
distribution, until the spectrum due to the large diameters 
associated with the actual cerebellum exceeds the noise 
distribution. For cases where this assumption fails, we 
have the second step. Failure is detected by the fact that 
the estimated order of the morphological filter will 
remain more than 80% of the estimated cerebellum 
pixels.' In this case, we use an order of 4, which is the 
safest noise estimate, since the close operation in step 2 
of the main segmentation algorithm is of the same order. 

. III. Results 

The four MRI images of Figure 1 were tested by using 
two images for training, while leaving the other two for 
testing. All 24 possible permutations of the=ordering of 
the images were investigated. Two representative 
automated segmentation results are given in Figure 3. 

The left image in Figure 3 illustrates that the cerebellum 
cortex can be captured with excellent accuracy by only 
using the AM-FM amplitude. The right image in Figure 3 
shows that this is not always the case. The cerebellum 
cortex is characterized by unique Frequency Modulation 
variation that could be used to improve on such results. 
The non-cortex part presented some rather unique 
challenges. The algorithm consistently missed the outer 
extends while converging to the inside circular region 
shown in both images in Figure 3. The encouraging 
observation is that the outer extends that were missed, 
consist of very well defined edge. Hence, an active 
contour segmentation algorithm initialized to the 
automated AM-FM results, would easily be attracted to 
the outer extends. Another important future research 
direction would be to develop 3-D segmentation 
algorithms. 
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Figure 1. The manually segmented MRI images. A white line around the cerebellum denotes the boundary of the 
cerebellum. The images are of size 256 x 256 . 
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Figure 2. Amplitude histograms for the upper-left image of Figure 1. Amplitude histograms for the other MRI images 
share similar shapes. The upper-left plot is for the amplitude values over the entire image. The upper-right plot shows the 
amplitude distributions over the non-cerebellum regions (upper histogram) and the cerebellum region (lower histogram). 
The lower-left plot shows the histogram of the amplitude over the cerebellum. The lower-right plot shows the histogram of 
the amplitude over the non-cerebellum region. 

Figure 3. Automated segmentation results. For the error, we count the total number of misclassified pixels and divide by 
the total number of pixels in the image. The image on the left had 2.5% misclassified pixels (n = 4, for the granulometric 
filter), while the image on the right had 4.9% misclassified pixels (n = 6, for the granulometric filter). 
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