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Abstract: A general framework to develop efficient Single Instruction Multiple Data (SIMD) compliant algorithms was
recently propesed [3]. In this paper a split-radix SIMD-FFT algorithm is derived under this framework and compared
against the lately developed radix-2 SIMD-FFT [1,2] algorithm, proven to have very efficient implementation.
Regardless of the intrinsic irregular pattern present in the split-radix algorithm, it is shown that its performance
improvement, when compared to the radix-2 algorithm, ranges from 2.5% upto 8.1%

1. INTRODUCTION

A SIMD capable processor can operate over S input
clements in parallel, given that they are continuous in
memory. The number S depends on the data type and on
the target architecture; for single-precision floating-
point numbers 8 is four {currently state-of-art for Intel’s
SSE & SSE2 [10] and Motorla’s AltiVec[11]); without
toss of generality, this is the considered data type.

A recent research on algorithms to compute the FFT
of N-D complex input data [1,2], based on SIMD
operations and on the classic radix-2 FFT algorithm,
lead to a general framework to develop SIMD compliant
algorithms [3). The previous developed algorithms were
found to be faster than any scalar FFT implementation
as well other FFT implementations that take advantage
of the SIMD architecture [6,7,8,9]

In this paper a novel split-radix SIMD-FFT is derived
and implemented under the computational framework
for SIMD architectures [3], and compared against the
radix-2 SIMD-FFT; for N (complex input data size)
equal or greater than 1024 elements the split-radix
shows an improvement raging from 2.5% up to 8.1%. It
should be recalled that the computational complexity,
measured in flops, for the scalar radix-2 and split-radix
algorithms  are  5*N*log,(N) and 4*N*log,(N)
respectively; so a 25% improvement (best case) should
be expected, if memory access patterns are neglected.

This paper is organized as follows: in section 2 a
briefly overview of the computational framework for
SIMD architectures is presented, along with the
programming model and the idea of the simd-flop cost;
The radix-2 and split-radix SIMD algorithms are
derived in section 3, where implementations issues are
also discussed. In section 4 the computational results are
shown; finally conclusions are Iisted in section 5.

2, COMPUTATIONAL SIMD FRAMEWORK

Overall SIMD technology has similar capabilities
among  different  microprocessor  manufacturers,
nevertheless the manner a particular SIMD operation is
carry out depends deeply on the particular architecture.
If it is desired to develop a SIMD aware algorithm that
will be easily implemented on any architecture it is
necessary to understand the common functionality and

constraints  imposed on  simd-operations.  This
understanding is also strongly related to the method used
to code a program which employs simd-operations: it
can depend on the compiler (ie: Intel's compiler,
Motorola’s patched GCC) and access simd-operations at
a high level (i.e: simd_add, simd_mul, etc.) or it is
archilecture-dependent and accesses simd-operations at
low level using a standard compiler (mixing assembly
with the chosen programuing language). The second
approach is used in this framework, because an
abstraction layer and primitive-simd-operations are
easily developed, to map a particular operation into a set
of architecture-dependent simd-operations.

Any SIMD capable processor has a set of special
registers, whose characteristics (fength and number) are
architecture dependent (8 and 32 simd-registers, 128-bit
long each for Intel’s SSE and Motorola’s AltiVec
respectively). Note that with the chosen framework an
efficient use of the simd-registers can be premeditated
and may as well minimize the number of memory data
access.

Memory data access has a great impact on the
pertormance of any SIMD application (load a simd-
register with memory data and vice-versa). addressed
memeory should be 16-bit aligned and data elements also
should be continuous in memory; moreover the memory
addressing mode depends on the architecture: AltiVec
uses memory indexing mode for any memory address
offset, while SSE specifies an immediate operand to
accomplish the same task. Thus all pre-computed dara
(twiddle factors in the FFT algorithm for instance)
should be arranged taken this constraint into account.

As an example of these facts, Table 1 shows how Lo
perform a complex addition and subtraction of two
complex operands and also multiplication of two
complex operands (both are basic operations carried out
in any FFT algorithm) for SSE and AltiVec
architectures; also this table serves to the purpose of
introducing the differences between both architectures,
and how a primitive operation can be mapped for each
architecture.

A simd-flop is defined as a floating-point operation
carried out using the SIMD architecture; a simplistic
relationship between & simd-flop and a (scalar) flop is
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that a simd-flop is equivalent to $ scalar flops, where §
is the number of elements that can be operated at the
same time (S is equal to four for single-precision
floating-point numbers); this relationship is verified if
we calculate the number of flops needed for the scalar
and simd case (for the Intel architecture we have 16
flops and 24 flops for addition/subtraction and
multiplication respectively in the scalar case, and 4 and
6 simd-flops using SSE). Nevertheless, it is clear from
Table 1 that depending on how a particular operation is
mapped into the SIMD architecture il can use more or
less memory access and floating-point operations as
well; under the proposed {ramework, the number of
memory accesses (kept to minimum) is trade-off by
using more simd-registers.

Table 1

Input X=A+jB A.B,C.D} are vectors of four

this measurement not only give a simple way to predict
the time performance, but also the relationship between
the elapsed-time and the input data size, give hints on
how to improve the particular implementation.

Also, it should be noted that any algorithm that
accesses an array in a linear fashion (one element after
the other) and performs similar operations over thesc
elements can casily take advantage of any SIMD
architecture. Thus existing algorithm should be modified
to accomplish this basic constrain; the complexity of this
task is algorithm dependent.

3. SIMD FFT
3.1 Radix-2 SIMD-FFT
The radix-2 SIMD-FFT algorithm modifies the
operations performed in the first and second stage of the
standard radix-2 FFT. Let X = [Xo X; .. XN,]]T where
N = 2™, then the radix-2 SIMD-FFT can be expressed

Y=C+jD contiguous elements in memory as follows [1,2,5F
Output Oy=X+Y  (clement wise) O3=X*Y (element wise) m

O =X-Y (clement wisc) Y Z(HAk IR 5w Tow Ry nSuR Ry TS X

SSE k=3
Complex add/sub Complex mul (H
Ay =1, @B, @
load regl € A load reg0 @ A 2
load reg) @ B load reg] @ B I, Q.
load reg3 € C load reg3 € C By = 3
load regt @ D load regd @ D I -9
load reg2 @ reg0 load reg2 @ reg0 S, = Tnn Ing 4
load reg5 @ regl N7 1. @
mul regd € regd * reg3 N2 N2

add reg0 @ reg0 + reg3 mul reg2 € reg2 * repd 1 0
sub rep2 @ reg2 —reg3 roul reg3 € reg3 * regl T, —| 3N/A4 i {5)
add reg] @ regl + regd mul regl € regl * regd LN - JIN/4

sub regs @ regl —regd
add reg0 € regd —regl
store RE(O)) @ reg0 sub reg2 € reg? + regl
store IM(O)) € regl
store RE(O) € reg2
store IM{0;) € reg5

store RE(O3) € regd
store IM(O3) € reg2

AltiVec
load reg0 € A load regD @ A
load reg! € B load regl €& B
load reg2 @ C load reg2 € C
load regd € D load reg3 @ D
add regd € regl + reg2 set regd € 0
sub regS @ rep - reg2 set regs € 0

add regh € regl + reg3
sub reg? @ regl - reg3 mac regd € regl * reg3 + regd
mac regd € reg0 * reg2 — regd
mac reg5 € regQ * reg3 + regS
mac reg5 € regl * reg2 + regd

store RE(O)) € regd
store IM(O)) € regh
store RE(Q2) € regs
store IM(Q;) € reg? store RE(O3) @ regd

store IM(O3) € regh

In order to predict the time-performance of a given
simd aware algorithm the time needed to perform a
simd-flop could be used, nevertheless memory accesses
have a great impact on the overall time performance,
and must be taken into account. This issue is solved if a
measurement of a complete basic operation, carried out
repeatedly, in the given algorithmn is elapsed; for the
case of the SIMD-FFT the complex add/sub operation is
chosen as the basic operation (see table 2, in section 4);

Iy © 0 O
0V, 0 0

Tyy = 6
T Iy 0 ©

00 0V,

Where @ is the Kronecker p.roduct, Iy is an NxN
identity matrix, Q = diag(l, Wy ... W5™), W = ¢
and Py = Per(Iy) is the bit reversal permutation of the
columns of the matrix Iy. Ry n=Mix( [; ®Py; ) and
Ryyn = Mix(I; ® Mix(l: ® Puw)): also Rayn = Inu® Py
and R = Ryy; The matrix operation Mix(H) is a
permutation of the square NxN matrix H: let H be
expressed as H = [H.,Hz....,HN]T, where Hy is the k™
row of H, then
Mix(H) = [H;,HypHa, Hyers - Hia . Hil

Matrices V, and V; (equation (4)} are diagonal, where
vV, = diag(],WBl,...,l,W,{). The elements of V, are
composed of two factors, and each is repeated N/8
times. Also Vi = diag(W¢, Wg.... W3, W) has a similar
structure. These matrices impose a restriction: the input
data size must be greater or equal than eight.

[t is well known that for the scalar case the complexity
of the radix-2 FFT is 3*N¥log,(N) flops; a similar
analysis will confirm that the complexity for the SIMD
(eq. 1) case is 5*{N/S}*log,{N} simd-flops.
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3.2 Split-radix SIMD-FFT

Using a similar approach, the split-radix SIMD-FFT
can be derived after analyzing the scalar split-radix
algorithm, which ca be expressed as follows (partially
based on [5, section 2.5]):

Y =PnX: loops=N72; L=1
for st=1:logAN)
for k=0:loops-1; L=L*2
switch(Bn(k)}
case ONE: Y(kL:(k+1)L-1} = S Y(kL:(k+1)L-D)
case JAY: Y(kL:(k+1DL-1) = I.S Y (kL:(k+1)L-1}
case Ko Y(kLik+1)L-1) = K S Y (RLi(k+ DL 1)

case _3K: Y{(kL:{(k+1)L-1} = ELSLY(KLi{k+1)L-1)
end
end

end (7)
Where I = diag(l.1...1, -, 4 .. -j) has two groups of
L/2 elements as shown. K; = diag(WfL) and

Ep = diag(W2¥), where s=(0:N/L:N-1) which are only

needed for L = {2,4,.,N/4}; the array Py contains the

pattern needed to correcily perform the operations

involved in the split-radix algorithm {5, section 2.5.5]
The split-radix SIMD-FFT algorithm modifies the

operations performed in the first and second stage of the

scalar split-radix FIT; for the first stage:

Na = N/ Nag = 3¥N/d; Ny = N/8; Nog = T¥N/S;

X = 8$uX (8)

for k=0:4:Ns-1

switch wu(Ne+k : Ne+ki3) )

case 11 X{(Nu+kiNp+k+3) = K X(Nag+kiNa+k+3)
case 2: K(Natk:Nag+k+3) = K pX{Nag+k:Nas+k+3)
case 31 X(Ny+k:Nagak+3) = KppX(Nag+k:Nag+k+3}
case 41 X(Nag+k:Nag+k+3) = KaX(Nag+k:Na+k+3)

end (&)
X{6*N/B:T*IN/B) = (-j)*¥X(6FN/B:T¥N/S) (10)
for k=Ny: 4 : Ng+Ng-1

switch{ yn(ki4) )

case 1: X(Nyg+k:Nyg+k+3) = B X(Nzg+k:N7g+k+3)

case 2 X(Nyg+kiNpg+k+3) = E2X(Nyg+kiN7z+k+3)

case 3 X(N7+kiNp+k+3) = EaX(Nrs+k:N7s+k+3)
case4:  X{Nzg+kiNpgp+k+3) = E s XNtk :Nra+k+3)

end (I 1)
X=RonRiunX (12)
Where Wnp = Pup PBye . Ky = diag(l,1,1,1),

Kiz = diag{Ws, Wy, Wy, W), K|y = diag(1,1,Wyg,1),
K]4 = dlﬂg(w, ‘Vx, 1, W3); also E“ = diag('j, '_j, ’jy 'j)!
Ep; = diag(W,, W, Wy, Wg), Eiy = diag(,-j, W, -j), and
Ej= diag(W,, Wy . W)

For the second stage, let loops = N/2 and L=4, then:

X = Ran Rz SaX (13)
for k=0:loops-1
switch(@n(k))
case JAY:  X(kL(k+ DYL-1} = JLX(KL:(k+ L1}
case K X(kL:(k+1)L-1) = K X(kLo(k+1)L-1)

case _3K:  X(kL:xk+1)L-1) = B X(kL:(k+1)L-1}

end
end

end 4

The proposed split-radix SIMD-FFT algorithm will
work for N>32; nevertheless a similar approach is used
for cases when N is 8 and 16. As in the radix-2 case, the
minimum data size that can be processed using the ideas
behind this algorithm is eight.

Operations defined for the first stage (egs. §-12) are
easily mapped into primitive-simd-operations: all data
accesses are linearly and contiguous in memory, Sy is
the addition subtraction operation previously defined as
well as the complex multiplication carried out in (9) and
{11). It also should be noted that in the second stage,
operations (13) and (14) can be merged into a single
procedure, which is not shown here for the sake of
simplicity.

Operations defined by Ry n and Rion can also take
advantage of the SIMD architecture, because they can
be performed by accessing the high/low 64-bits of the
SIMD register (that holds the partial result) and stored it
in the appropriste memory location. From the
implementation point of view, both operations (R, y and
Rian) are merged into a single operation. Also
reordering the elements in the SIMD register can
perform operations defined by Ry, n. The operation
Rz is the same as Ry .

For large N, the complexity of the scalar split-radix is
4*N*log,(N) flops [5]; also it could be proved that the
complexity for the split-radix SIMD-FFT algorithm is
4*(N/SY*logx(N) simd-flops. From simd-{lops only point
of view, the performance improvement for the split-
radix (compared to the radix-2) is 25%; nevertheless for
both, the scalar and SIMD versions, the split-radix
algorithm does not show a high rcgularity as in the
radix-2 algorithm. Thus we can expect that its overall
performance in a real application will be less than the
theoretical one.

4. COMPUTATIONAL RESULTS

Both algorithms were implemented in C along with
inline assembly instructions, using Linux as OS on an
Intel architecture (to allow portability only PIIl SSE
instruction set was allowed) and on a Motorola
PowerPC (PPC} architecture

The split-radix algorithm was fully tested on a
PentiumlIl (PIII-M with kernel 2.4.17; also the kernel
was patched to be preemptible} running at 1.0 GHz, with
512M of RAM and 512K of L2-cache and on a
Peintium4 (P4 with kernel 2.4.13) running at 1.4 GHz,
with 5312M of RAM and 256 of L2-cache. CPU clocks
were measured using the time-stamp counter [10], and
used to calculate the time performance of the split-radix
and radix-2 SIMD-FFT implementations.

In table 2 the elapsed-time to complete a basic
operation {complex add/sub) for both architectures is
shown. It is important to note that the elapsed-time only
follows a linear relationship with the input data size
within ranges; if the relationship is broken (N=2'' and
N=2" for PIIl and P4 respectively) then for the real
implementation it is recommended to Ifoop-unroll the
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basic operation to improve the final time-performance
(values in table 2 came from a loop version of the code
shown in table 1). To predict the time performance of
the SIMD-FFT algorithms the values shown in table 2
are multiply by (5/4)*log,N and log,N for the radix-2
and split-radix respectively (sce italics in table 3).

operations, in any given algorithm, have a great impact
in the overall time performance.

Table 3
Time performance for the 10 complex input data. The actual
and predicted mean value (us) for 10% iterations are shown.

5 MEAN TIME (MICROSECONDS)

‘ - Table l2 . . 5 | LINUXINTEL P (512M | LINUX INTELP4 (512M |
Time performancc: for I e complex add/sub operation. The z RAM 512K 1.2-CACHE) RAM 256K L2.CACHE)
mean value for 107 iterations is shown. Splic-Radis Radin? Spit-Radix Radinz

s MEAN VALUE | o 0382 033 0.58
; PIII P4 {0.75) {0.93) {0.75) (0.93)
E Ticks Time (us) Ticks | Time (us) 26 1.83 1.64 123 113

T | 15427 015 217.09 015 A (1.38) (1.72) {(1.2) (4.9}

27| 23496 023 277.80 0.20 2 4.19 312 284 2.66

7| 42547 042 548.27 039 294 (3.67) 2.73) f“g )

2 | 74804 074 928,57 066 z 8.99 8.79 6.04 6.0

5 (5.92) (7.4) (5.28) (6.6)

2 1407.25 1.40 1901.32 L35 ——

0 2 19.24 19.04 13.05 13.51

2 2886.14 2.87 3620.10 2.57

LI} {12.6) (15.75) (12.15) (15.18)
27| 749005 7.4 T171.41 5.09 -
2 2% 4041 41,42 30,35 30.19

2 1513813 15.04 14124.05 10.02

T (28.7) (35.87) (25.7) (32.12)

2 30169.38 29.97 28860.99 2047 —1

T ] 6073520 | 6033 | 24363043 | 172.82 27| B30 93.27 67.10 69.38

= - = - = (81.84) (102.3) (55,95} (69.98)
. 27| 206.80 220.64 148.49 152.62

The procedure used to compare the time performance (180.48) (225.60) 12024y | (150.30)
between both implementations was to perform the direct S 439.68 48621 32524 136.75
Fourier transform of complex-input data, for length from (389.61) (487.01) (266.11) (332.64)
2% up to 2'* elements for 1D arrays. The transform was 21T 1010.32 1071.03 85534 884.44
performed repeatedly (10% iterations) for a particular (844.62) {1055.8) (560) {844%)
size, and repeated 10 times. Also, any one-time
initialjzation cost is not included in the measurements. REFERENCES

In Table 3 the time performance of the split-radix and
the radix-2 SIMD-FFT are shown (best case). For small
numbers (N<512) the radix-2 version has a better
performance (in the average); nevertheless for large
numbers (N21024) that situation is reversed: the split-
radix’s improvement ranges from 2.5% unto 8.1%,
where the percentage factor is: 100%(Trapm.»/TspLm.
rapix — 1). This performance behavior can be explained
recalling that the split-radix algorithm presents an
irregular math operation pattern {compared to the radix-
2 algorithm), and this fact affects its overall
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flops (compared to the radix-2 case), its time-
performance js improved. Also note that the estimated
mean value for the time performance is accurate for the
radix-2 case, whereas for the split-radix a significant
difference is observed. The author expects, based on the
estimated time-performance that the actual time-
performance of the split-radix can be further improve.

5, CONCLUSIONS
The split-radix SIMD-FFT algorithm was derived and
implemented following the computational framework for
SIMD architectures introduced in [3); its time
performance shows an improvement over the radix-2
SIMD-FFT [1]; however, it is less than the theoretical
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near future. Results shown in this paper, confirms that
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