
Abstract: A general framework to develop cfficient Single Instruction Multiple Data (SIMD) compliant algorithms was
recently proposed [3]. In this paper a split-radix SIMD-FIT algorithm is derived under this framework and compared
against the lately developed radix-2 SIMD-FF'I [1,2] algorithm, proven to have very efficient implementation.
Regardless of the intrinsic irregular pattern present in the split-radix algoritlun, it is shown that its performance
improvement, when compared to the radix-2 algorithm, ranges from 2.5% upto 8. I %

1. INTRODUCTION constraints imposed on simd-operations. This
A SlMD capable processor can operate ovkr S input understanding is also strongly related to the method used

elements in parallel, given that they are qdntinuaus in to code a program which employs simd-operations: i t
memory The number S depends on the data type and on can depend on the compiler (i.e.: Intel's compiler,
the targel architecture; for single-precision floating- Motorola's patched GCC) and access simd-operations a1
point numbers S is four (currently state-of-art for Intel's a high level (;.e: simd-add, simd-mul, etc.) or it is
SSE & SSE? [lo] and Motorla's AltiVec[l I]); without architecture-depeildenl and accesses simd-operations at
loss of generality, this is the considered data type. low level using a standard compiler (mixing assembly

A recent research on algorithms to compute the FFT with the chosen programming language). The second
of N-D complex input data [1,2], based on SIMD approach is used in this framework, because an
operations and on the classic radix-2 FIT algorithm, abstraction layer and primitive-simd-operations are
lead to a general framework to develop SlMD compliant easily developed, to map a particular operation into a set
algorithms [3]. The previous developed algorithms were of architechxe-dependent simd-operations.
found to be faster than any scalar FFI implementation Any SlMD capable processor has a set of special
as well other FIT implemcntations that take advantage registers, whose characteristics (length and number) are
of the SlMD architecture [6,7,8,9] architechxe dependent (8 and 32 simd-registers, 128-bit

In this paper a novel split-radix SIMD-FFT is derived long each for Intel's SSE and Motorola's AltiVec
and implemented under the computational framework respectively). Note that with the chosen framework an
for SlMD architectures [3] , and compared against the efficient use of the simd-registers cm be premeditated
radix-2 SIMD-FIT; for N (complex input data size) and may as well minimize the number of memory data
equal or greater than 1024 elements the split-radix access.
shows an improvement raging from 2.5% up to 8.1%. It Memory data access has a great impact on the
should be recalled that lhe computational complexity, performance of any SIMD application (load a simd-
measured in klops, for the scalar radix-2 and split-radix register with memory data and vice-versa): addressed
algorithms are 5*N*log2(N) and 4*N*log2(N) memory should be 16-bit aligned and data elements also
respectively; so a 25% improvement (best case) should should be continuous in memory; moreover the memory
be expected, if memory access patterns are neglected. addressing mode depends on the architecture: AltiVec

This paper is organized as follows: in Section 2 a uses memory indexing mode for any memory address
briefly overview of the computational framework far offset, while SSE specifies an immediate operand to
SlMD architectures is presented, along with the accomplish the same task. Thus a11 prc-computed data
programming model and the idea of the simd-flop cost; (twiddle factors in the FIT algorithm for instance)
The radix-2 and split-radix SlMD algorithms are should be arranged taken this constraint into account.
derived in section 3, where implementations issues are As an example of these facts, Table 1 shows how to
also discussed. In section 4 the computational results are perform a complex addition and subtraction of two
shown; finally conclusions are listed in section 5. complex operands and also multiplication of two

complex operands (both are basic operations carried out
2. COMPUTATIONAL SIMD FRAMEWORK in any FFT algorithm) for SSE and AltiVec

Overall SIMD technology has similar capabilities architectures; also this table serves to the purpose of
among different microprocessor manufacturers, introducing the differences between both architectures,
nevertheless the manner a particular SlMD operation is and how a primitive operation can be mapped for each
carry out depends deeply on the particular architecture. architecture.
If it is desired to develop a SlMD aware algorithm that A simd-flop is defined as a floating-point operation
will be easily implemented on any architecture it is carried out using the SIMD architecture; a simplistic
necessary to understand the common functionality and relationship between a simd-flop and a (scalar) flop is

0-7803-7503-3/02/$17.00 02002 IEEE DSP 2002 - 861

that a simd-flop is equivalent to S scalar flops, where S
is the number of elements that can be operated at the
same time (S is equal to four for single-precision
floating-point numbers); this relationship is verified if
we calculate the number of flops needed for the scalar
and simd case (far the Intel architecture we have 16
flops and 24 flops for additiodsubtraction and
multiplication respectively in the scalar case, and 4 and
6 simd-flops using SSE). Nevertheless, it is clear frvm
Table 1 that depending on how a particular operation is
mapped into the SIMD architecture it can use more or
less memory access and floating-point operations as
well; under thc proposed framework, the number of
memory accesses (kept to minimum) is trade-off by
using more simd-registers.

Tahle 1

Input

Ourput 0% = X + Y (clcmcnl wisc) 0, = X * Y (element wise)

X = A + j B
Y= C + jD

O2 = X ~ Y

A.B.C.0 arc Y C C I O ~ of four
contiguous elements in memory

(element wire)

S

Camplen vddlsub

load rego C A
load reg1 R

load reg4 D

load reg2 reg0
load reg5 reg1

add 'ego reg0 + reg3
sub reg2 reg2 - reg3
add rcg l reg1 + reg4
suh reg5 reg5 - reg4

slore RE(OI) reg0

~iore KE(02) t reg2

load reg3 c c

SIOrc lM(0,) e '4

SlOrC M(02) c res5

All

load reg0 C A
load reg1 t B
load reg2 C
load reg3 C 0

add reg4 C reg0 + rcg2
sub reg5 reg0 - reg2
add reg6 C r q t + reg3
sub reg7 reg1 I reg3

SlOlC I<E(O,) c reg4
sure LM(0,) e reg6

store N(0*) c reg7
store RE(02) C reg5

Complex mu1

load reg0 A
load reg1 B
load reg3 C C
load reg4 D

load reg2 reg0

>""I reg0 c reg0 f reg3
mUI reg2 e reg2 * reg4
mu1 reg3 e reg3 * reg1
,""I reg1 c reg1 * reg4

add reg0 C reg0 ~ rcgl
sub rcg2 C rcg2 + reg3

store KB(O3) reg0
r1ore IM(Oi) c reg2

ec

load reg0 A
load rcg l C B
load reg2 C C
land reg3 D

set reg4 e 0
set reg5 C 0

mac reg4 e reg1 * reg3 + reg4
mac reg4 c reg0 * reg2 - reg4
mac reg5 c reg0 * reg3 + regs
nl_ reg5 e reg1 * reg2 + reg5

store RE(O3) reg4
store M(Oi) C reg6

In order to predict the time-performance of a given
simd aware algorithm the time needed to perform a
simd-flop could be used, neverlhheless memory ~ C C C S S C S

have a great impact on the overall time performance,
and must be taken into account. This issue is solved if a
measurement of a complete basic operation, carried out
repeatedly, in the given algorithm is elapsed; for the
case of the SIMD-FIT the complex add/sub operation is
chosen as the basic operation (see table 2, in section 4);

this measurement no1 only give a simple way to predict
the time performance, but also the relationship between
the elapsed-time and the input data size, give hints on
how to improve the particular implementation.

Also, it should be noted that any algorithm that
accesses an array i n a linear fashion (one element after
the other) and performs similar operations over thesc
elements can easily take advantage of any SIMD
architecture. Thus existing algorithm should be modified
to accomplish this basic constrain; the complexity of this
task is algorithm dependent.

3. SIMD FFT
3.1 Radix-2 SIMD-FFT
The radix-2 SIMD-FlT algorithm modifies the
operations performed in the first and second stage of the
standard radix-2 F I T Let X = [xg xi .. X N ~ I] ~ where
N = 2m , then the radix-2 SIMD-FF'T can be expressed
as follows [1,2,5]:

m

=(HAL)RII.NTZ.NR21.NSNR12.NRII.NTl.NSNX
k = 3

B2L=[; ; (3)

Where 63 is the Kronecker product, IN is an NxN
identity matrix, C ~ L = diag(1.W ,,,..., Wkc'), W, = dZnn
and PN = Per(1,) is the bit reversal permutation of the
columns of the matrix IN. R,,,N=Mix(l2 @PNn) and
R,>.N = Mix(1263Mix(li63PN,~jj: also R21.N = INid@P4
and Rx2 = RI, ; The matrix operation Mix(H) is a
permutation of the square NxN matrix H: let H be
expressed as H = [Hl,H>, HxIT, where Hk i s the kth
row of H, then
MixW) = [HI.HNP-.Hz.HNR+I,. - - .HN~+~.HNI.

Matrices V I and V2 (equation (4)) arc diagonal, where
V, = diag(1.W; l ,WA). The elements of V , are
composed of two factors, and each is repeated N/8
times. Also VI = diag(Wgz.Wg3 ,..., WgZ,Wgi) has a similar
structure. These matrices impose a restriction: the input
data size must be grcater or equal than eight.

I t is well known that for the scalar case the complexity
of the radix-2 FFI is 5*N*log2(Nj flops; a similar
analysis will confirm that the complexity for the SIMD
(eq. I) case is 5*(N/S)*log,(N) simd-flops.

DSP 2002 - 862

3.2 Split-radix SIMD-FFT
Using a similar approach, the split-radix SIMD-FFT

can be derived after analyzing the scalar split-radix
algorithm, which ca be expressed as follows (partially
based on 15, section 2.51):
Y = PNX. loops = Ni2: L s I
for st=l:logdN)

swtch(!3ri(k))
fork=olo"ps-l: LL'I

cascONE: Y(kL:(k+l)L-I) = SLY(kL(k+l)L-l)

CPJCJAY: Y(kL(k+I)L-l) = J L S L Y (~ L (~ + I) L - I I

csse_K Y(kL(k+l)Ll) = KISLY(kL:(k+l)LI)

case -3K Y(kL:(k+ I)L- 1) = S S L Y (k L (k + I IL- 1 1
end

end

end (7)

Where .IL = diag(l,l ... I , -j, -j .. -1) has two groups of
U2 elements as shown. K,, = diag(W:L) and

EL = diag(W2;). where s=(ON/L:N-I) which are only

needed for L = (2,4,..,N/4); the array PN contains the
pattern needed to correctly perform the operations
involved in the split-radix algorithm [S. section 2.5.51

The split-radix SIMD-FFT algorithm modifics the
operations performed in the first and second stage of the
scalar split-radix FFT; for the first stage:
N4 = N14: Nr = 3*N14: Na =NIX Nid = 7*Nl8:

x = SNX (8)
lor k=O:4Nn-l
su,ich(yr*n(Na+k : N8+k+3))

case 1: X(N14+k:Nu+k+3) = KIIX(N3,+k:Nwtk+3)

case 2: X(Nin+k:Nu+k+3) = Kn2X(Nil+k:Nsi+k+3)

case 3: X(Nu+kNw+k+3) = K1,X(Nu+kNih+tr+3)

CIIC 4: X(Nlr+k:Nw+k+3) = K(iX(Nw+kNir+k+i)
end (9)

X(6*Ni8:7*Nl8) = (-j)*X(6*Nl8:7*N/8) (10)
for k=Nr: 4 : N4+Na-l
switch(yrNJ2(k:4))

casc 1 : X(Nin+k:Nn+k+3) = En,X(NIR+k:Nm+k+3)

case ?: X(Na+k:Nix+k+3) = EizX(N7,+k:Nlx+k+3)

case 3: X(Nx+kNia+k+3) = EliX(NistkNla+k+3)

case 4: X(Nia+k:Nia+k+3) = ElaX(N7,+k:N7a+k+3)

end (1 1)
X = K m KII .N X (12)

Where V ~ l i = P N I ~ p ~ n . K S I = diag(l.1,I.l).
K U = diag(W8, W,, WS, Wd. K 1 3 = diag(Ix1,W8.1),
K I ~ = diag(W8, W,, I , Wx); also E,, = diag(-j, -j, -j, -j),
En = diag(W,'.W,'.W,'.W,'), EE = diag(-j,-j,W~.-j), and

Ell = disg(W,',W:,-j.W,')

For the second stage. let loops = Ni2 and L=4, then:

X = R ~ L N RXN SNX
fur k=olO"ps~l

(13)

switch(/lN(k))
case JAY: X(kL(k+I)L-I) = JLX(kL(k+l)L-l)

ca3e-K: X(kL:(k+I)L-I)=K~X(kL(k+I)LI)

cesr-3K: X(kL(k+l)Ll) = ErX(kL(k+I)LI)

cn d
End

end (14)

The proposed split-radix SIMD-FFT algorithm will
work for N?32; nevertheless a similar approach is used
for cases when N is 8 and 16. As in the radix-2 case, the
minimum data size that can be processed using the ideas
behind this algorithm is eight.

Operations defined for the first stage (eqs. 8-12) arc
easily mapped into primitive-simd-operations: all data
accesses are linearly and contiguous in memory, SN is
the addition subtraction operation previously defined as
well as the complex multiplication carried out in (9) and
(11). It also should be noted that in the second stage,
operations (13) and (14) can he merged into a single
procedure, which is not shown here for the sake of
simplicity.

Ooeratians defined hv R , , w and R , , N can also take ,
advantage of the SlMD architecture. because they can
he performed by accessing the highilow 64-hits of the
SIMD register (that holds thc partial result) and stored i t
in the appropriate memory location. From the
implementation point of vicw, both operations (R,,,N and
R 1 2 , ~) are merged into a single operation. Also
reordering the elements in the SlMD register can
perform operations defined by R21, N. The operation
R l i , ~ is the same as

For large N, the complexity of the scalar split-radix is
4*N*log,(N) flops [SI; also it could he proved that the
complexity for the split-radix SIMD-FFT algorithm is
4*(N/S)*logjN) simd-flops. From simd-flops only point
of view, the performance improvement for the split-
radix (compared to thc radix-2) is 25%; nevertheless for
both, the scalar and SIMD versions, the split-radix
algorithm does not show a high rcgularity as in the
radix-2 algorithm. Thus we can expect that its overall
performance in a real application will be less than the
rheoretical one.

4. COMPUTATIONAL RESULTS
Both algorithms were implemented in C along with

inline assembly instructions, using Limn as OS an an
Intel architecture (to allow portability only Plll SSE
instruction set was allowed) and on a Motorola
PowerPC (PPC) architecture

The split-radix algorithm was fully rested on a
PentiumIll (PIII-M with kernel 2.4.11; also the kernel
was patched to he preemptihle) running at I .O GHz, with
512M of RAM and 512K of L2-cache and on a
Peintium4 (P4 with kernel 2.4.13) mnning at 1.4 GHz.
with 512M of RAM and 256 of L2-cache. CPU clocks
were measured using the time-stamp countcr [IO], and
used to calculate the time performance of the split-radix
and radix-2 SIMD-FFT implementations.

In table 2 the elapsed-time to complete a basic
operation (complex addhub) ior both architectures is
shown. It is important to note that the elapscd-time only
Iollows a linear relationship with the input data size
within ranges; if the relationship is broken (N=2" and
N=Z" for PI11 and P4 respectively) then for the real
implementation it is recommended to loop-unroll the

DSP 2002 - 863

basic operation to improve the final time-perlormance
(values in table 2 came from a loop version of the code
shown in table 1). To predict the timc performance of
the SIMD-FFT algorithms the values shown in table 2
are multiply by (5/4)*Iog,N and 10g,N for thc radix-2
and split-radix respectively (see italics in table 3).

Table 2
Time rmformance lor the c~mplex addlsub owration. The
mean value far IO'iterations is shown.

The procedure used to compare the time performance
betwcen both implementations was to perform the direct
Fourier transform of complex-input data, for length from
2' up to 214 elements for I D arrays. The transform was
performed repeatedly (10' iterations) lor a particular
size, and repeated 10 times. Also, any one-time
initialization cost is not included in the measurements.

In Table 3 the time performance of the split-radix and
the radix-2 SIMD-FFT are s h a m (best case). For small
numbers (N5512) the radix-? version has a better
performance (in the average); nevertheless for large
numbers (NZ1024) that situation is reversed the split-
radix's improvement ranges from 2.5% unto %I%,
where the percentage factor is: 100*(TKADE.2fTspLm.
RAD= - 1). This performance behavior can be explained
recalling that the split-radix algorithm presents an
irregular math operation pattern (compared to the radix-
2 algorithm), and t h i s fact affects its overall
performance for mid-range numbcrs (128-512). whereas
for large number, due to its smaller number of simd-
flops (compared to the radix-2 case), its time-
performance is improved. Also note that the estimated
mean value for the time performance is accurate for the
radix-2 case, whereas for the split-radix a significant
difference i s observed. The author expects, based on the
estimated time-performance that the actual time-
performance of the split-radix can be further improve.

.

5. CONCLUSIONS
The split-radix SIMD-FIT algorithm w a ~ derived and
implemented following the computational framework for
SIMD architectures introduced in 131; its time
performance shows an improvement over the radix-2
SIMD-FIT [I]; however, i t is less than the theoretical
bound predicted on a simd-flops based analysis; the
author expects to get closer to the theoretical bound in a
near future. Results shown in this paper, confirms that
the memory access pattern and regularity of math

operations, in any given algorithm, have a great impact
in the overall time performance.

Table 3
Time performance for the ID complex input data. The actual
and predicted m a n value (w) for I d iterations are shown.

MEAN TIME (MICROSECONDS)

0.53
(0.75)
1.83 1.64 1.23 1.13

(1.2) 11.5)
4.19 3.72 2.84 2.66

REFERENCES

[I] P. Rodriguez V. "A Radix-2 FFT Algorithm for
Modem Single Instruction Multiple Data (SIMD)
Architectures" accepted in ICASSP 2002

[Z] P. Rodriguez V. "A Radix-2 Multidimensional
Transposition-free FFT algorithm for Modem
Single Instruction Multiple Data (SIMD
Architectures" submitted to EUSIPCO 2002

I31 P. Rndriguez V., M.S. Pattichis, R. Jordan
"Computational Framework for Single Instruction
Multiple Data (SIMD) Architectures Applied IO

Digital Signal Processing" submitted to ICEE 2002
[4] D. E. Dudgeon, R. M. Mersereau

"Multidimensional Digital Signal Processing"
Prentice Hall, Englewood Cliffs, NI 1984

[SI C. Van Loan "Computational Frameworks for the
Fast Fourier Transform" SIAM 1992

[6] M. Frigo "A Fast Fourier Transform Compiler"
Proceedings of the PLDl Conference, May 1999
Atlanta, USA

[71 F. Franchetti "Architecture Independent Short
Vector FIT" ICASSP 2001 Proceedings, USA.

IS] "Split-Radix Fast Fourier Transform Using
Streaming SIMD Extensions" Version 2.1
Application Notes Intel Ap-808 January 1999

191 R. Crandall, 1 Klivintong "Super-Computing Style
FFT Library for Apple G4" January 2000 Advanced
Computation Group, Apple Computer

[10]"IA-32 Intel Architecture Software Developer's
Manual" Vol. 2, No. 245471, 2001

[I I] AltiVec Technology Programming Environment
Manual - CT-ALTIVECPEM-RI February 2001

DSP 2002 - 864

