
Abstract: A general framework to develop cfficient Single Instruction Multiple Data (SIMD) compliant algorithms was 
recently proposed [3]. In this paper a split-radix SIMD-FIT algorithm is derived under this framework and compared 
against the lately developed radix-2 SIMD-FF'I [1,2] algorithm, proven to have very efficient implementation. 
Regardless of the intrinsic irregular pattern present in the split-radix algoritlun, it is shown that its performance 
improvement, when compared to the radix-2 algorithm, ranges from 2.5% upto 8. I %  

1. INTRODUCTION constraints imposed on simd-operations. This 
A SlMD capable processor can operate ovkr S input understanding is also strongly related to the method used 

elements in parallel, given that they are qdntinuaus in to code a program which employs simd-operations: i t  
memory The number S depends on the data type and on can depend on the compiler (i.e.: Intel's compiler, 
the targel architecture; for single-precision floating- Motorola's patched GCC) and access simd-operations a1 
point numbers S is four (currently state-of-art for Intel's a high level (;.e: simd-add, simd-mul, etc.) or it is 
SSE & SSE? [lo] and Motorla's AltiVec[l I]); without architecture-depeildenl and accesses simd-operations at 
loss of generality, this is the considered data type. low level using a standard compiler (mixing assembly 

A recent research on algorithms to compute the FFT with the chosen programming language). The second 
of N-D complex input data [1,2], based on SIMD approach is used in this framework, because an 
operations and on the classic radix-2 FIT algorithm, abstraction layer and primitive-simd-operations are 
lead to a general framework to develop SlMD compliant easily developed, to map a particular operation into a set 
algorithms [3]. The previous developed algorithms were of architechxe-dependent simd-operations. 
found to be faster than any scalar FFI implementation Any SlMD capable processor has a set of special 
as well other FIT implemcntations that take advantage registers, whose characteristics (length and number) are 
of the SlMD architecture [6,7,8,9] architechxe dependent (8 and 32 simd-registers, 128-bit 

In this paper a novel split-radix SIMD-FFT is derived long each for Intel's SSE and Motorola's AltiVec 
and implemented under the computational framework respectively). Note that with the chosen framework an 
for SlMD architectures [ 3 ] ,  and compared against the efficient use of the simd-registers cm be premeditated 
radix-2 SIMD-FIT; for N (complex input data size) and may as well minimize the number of memory data 
equal or greater than 1024 elements the split-radix access. 
shows an improvement raging from 2.5% up to 8.1%. It Memory data access has a great impact on the 
should be recalled that lhe computational complexity, performance of any SIMD application (load a simd- 
measured in klops, for the scalar radix-2 and split-radix register with memory data and vice-versa): addressed 
algorithms are 5*N*log2(N) and 4*N*log2(N) memory should be 16-bit aligned and data elements also 
respectively; so a 25% improvement (best case) should should be continuous in memory; moreover the memory 
be expected, if memory access patterns are neglected. addressing mode depends on the architecture: AltiVec 

This paper is organized as follows: in Section 2 a uses memory indexing mode for any memory address 
briefly overview of the computational framework far offset, while SSE specifies an immediate operand to 
SlMD architectures is presented, along with the accomplish the same task. Thus a11 prc-computed data 
programming model and the idea of the simd-flop cost; (twiddle factors in the FIT algorithm for instance) 
The radix-2 and split-radix SlMD algorithms are should be arranged taken this constraint into account. 
derived in section 3, where implementations issues are As an example of these facts, Table 1 shows how to 
also discussed. In section 4 the computational results are perform a complex addition and subtraction of two 
shown; finally conclusions are listed in section 5. complex operands and also multiplication of two 

complex operands (both are basic operations carried out 
2. COMPUTATIONAL SIMD FRAMEWORK in any FFT algorithm) for SSE and AltiVec 

Overall SIMD technology has similar capabilities architectures; also this table serves to the purpose of 
among different microprocessor manufacturers, introducing the differences between both architectures, 
nevertheless the manner a particular SlMD operation is and how a primitive operation can be mapped for each 
carry out depends deeply on the particular architecture. architecture. 
If  it is desired to develop a SlMD aware algorithm that A simd-flop is defined as a floating-point operation 
will be easily implemented on any architecture it is carried out using the SIMD architecture; a simplistic 
necessary to understand the common functionality and relationship between a simd-flop and a (scalar) flop is 
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that a simd-flop is equivalent to S scalar flops, where S 
is the number of elements that can be operated at the 
same time ( S  is equal to four for single-precision 
floating-point numbers); this relationship is verified if 
we calculate the number of flops needed for the scalar 
and simd case (far the Intel architecture we have 16 
flops and 24 flops for additiodsubtraction and 
multiplication respectively in  the scalar case, and 4 and 
6 simd-flops using SSE). Nevertheless, it is clear frvm 
Table 1 that depending on how a particular operation is 
mapped into the SIMD architecture it can use more or 
less memory access and floating-point operations as 
well; under thc proposed framework, the number of 
memory accesses (kept to minimum) is trade-off by 
using more simd-registers. 

Tahle 1 

Input 

Ourput 0% = X + Y (clcmcnl wisc) 0, = X * Y (element wise) 

X = A + j B  
Y= C + jD 

O2 = X ~ Y 

A.B.C.0 arc Y C C I O ~  of four 
contiguous elements in memory 

(element wire) 

S 

Camplen vddlsub 

load rego C A 
load reg1 R 

load reg4 D 

load reg2 reg0 
load reg5 reg1 

add 'ego reg0 + reg3 
sub reg2 reg2 - reg3 
add rcg l  reg1 + reg4 
suh reg5 reg5 - reg4 

slore RE(OI) reg0 

~iore KE(02) t reg2 

load reg3 c c 

SIOrc lM(0,) e '4 

SlOrC M(02) c res5 

All 

load reg0 C A 
load reg1 t B 
load reg2 C 
load reg3 C 0 

add reg4 C reg0 + rcg2 
sub reg5 reg0 - reg2 
add reg6 C r q t  + reg3 
sub reg7 reg1 I reg3 

SlOlC I<E(O,) c reg4 
sure  LM(0,) e reg6 

store N(0*) c reg7 
store RE(02) C reg5 

Complex mu1 

load reg0 A 
load reg1 B 
load reg3 C C 
load reg4 D 

load reg2 reg0 

>""I reg0 c reg0 f reg3 
mUI reg2 e reg2 * reg4 
mu1 reg3 e reg3 * reg1 
,""I reg1 c reg1 * reg4 

add reg0 C reg0 ~ rcgl 
sub rcg2 C rcg2 + reg3 

store KB(O3) reg0 
r1ore IM(Oi) c reg2 

ec 

load reg0 A 
load rcg l  C B 
load reg2 C C 
land reg3 D 

set reg4 e 0 
set reg5 C 0 

mac reg4 e reg1 * reg3 + reg4 
mac reg4 c reg0 * reg2 - reg4 
mac reg5 c reg0 * reg3 + regs 
nl_ reg5 e reg1 * reg2 + reg5 

store RE(O3) reg4 
store M(Oi) C reg6 

In order to predict the time-performance of a given 
simd aware algorithm the time needed to perform a 
simd-flop could be used, neverlhheless memory ~ C C C S S C S  

have a great impact on the overall time performance, 
and must be taken into account. This issue is solved if a 
measurement of a complete basic operation, carried out 
repeatedly, in the given algorithm is elapsed; for the 
case of the SIMD-FIT the complex add/sub operation is 
chosen as the basic operation (see table 2, in section 4); 

this measurement no1 only give a simple way to predict 
the time performance, but also the relationship between 
the elapsed-time and the input data size, give hints on 
how to improve the particular implementation. 

Also, it should be noted that any algorithm that 
accesses an array i n  a linear fashion (one element after 
the other) and performs similar operations over thesc 
elements can easily take advantage of any SIMD 
architecture. Thus existing algorithm should be modified 
to accomplish this basic constrain; the complexity of this 
task is algorithm dependent. 

3. SIMD FFT 
3.1 Radix-2 SIMD-FFT 
The radix-2 SIMD-FlT algorithm modifies the 
operations performed in the first and second stage of the 
standard radix-2 F I T  Let X = [xg xi  .. X N ~ I ] ~  where 
N = 2m , then the radix-2 SIMD-FF'T can be expressed 
as follows [1,2,5]: 

m 

=(HAL )RII.NTZ.NR21.NSNR12.NRII.NTl.NSNX 
k = 3  

B2L=[; ;  (3) 

Where 63 is the Kronecker product, IN is an NxN 
identity matrix, C ~ L  = diag(1.W ,,,..., Wkc'), W, = dZnn 
and PN = Per(1,) is the bit reversal permutation of the 
columns of the matrix IN. R,,,N=Mix( l2 @PNn ) and 
R,>.N = Mix(1263Mix(li63PN,~jj: also R21.N = INid@P4 
and Rx2 = RI, ;  The matrix operation Mix(H) is a 
permutation of the square NxN matrix H: let H be 
expressed as H = [Hl,H> ...., HxIT, where Hk i s  the kth 
row of H, then 
MixW) = [HI.HNP-.Hz.HNR+I,. - - .HN~+~.HNI.  

Matrices V I  and V2 (equation (4)) arc diagonal, where 
V, = diag(1.W; .... l ,WA). The elements of V ,  are 
composed of two factors, and each is repeated N/8 
times. Also VI = diag(Wgz.Wg3 ,..., WgZ,Wgi) has a similar 
structure. These matrices impose a restriction: the input 
data size must be grcater or equal than eight. 

I t  is well known that for the scalar case the complexity 
of the radix-2 FFI is 5*N*log2(Nj flops; a similar 
analysis will confirm that the complexity for the SIMD 
(eq. I) case is 5*(N/S)*log,(N) simd-flops. 
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3.2 Split-radix SIMD-FFT 
Using a similar approach, the split-radix SIMD-FFT 

can be derived after analyzing the scalar split-radix 
algorithm, which ca be expressed as follows (partially 
based on 15, section 2.51): 
Y = PNX. loops = Ni2: L s I  
for st=l:logdN) 

swtch(!3ri(k)) 
fork=olo"ps-l: LL'I  

cascONE: Y(kL:(k+l)L-I) = SLY(kL(k+l)L-l) 

CPJCJAY: Y(kL(k+I)L-l)  = J L S L Y ( ~ L ( ~ + I ) L - I I  

csse_K Y(kL(k+l)Ll)  = KISLY(kL:(k+l)LI) 

case -3K Y(kL:(k+ I )L- 1) = S S L Y ( k L ( k +  I IL- 1 1 
end 

end 

end (7) 

Where .IL = diag(l,l ... I ,  -j, -j .. -1) has two groups of 
U2 elements as shown. K,, = diag(W:L) and 

EL = diag(W2;). where s=(ON/L:N-I) which are only 

needed for L = (2,4,..,N/4); the array PN contains the 
pattern needed to correctly perform the operations 
involved in the split-radix algorithm [S. section 2.5.51 

The split-radix SIMD-FFT algorithm modifics the 
operations performed in the first and second stage of the 
scalar split-radix FFT; for the first stage: 
N4 = N14: Nr = 3*N14: Na =NIX Nid = 7*Nl8: 

x = SNX (8) 
lor k=O:4Nn-l 
su,ich( yr*n(Na+k : N8+k+3) ) 

case 1: X(N14+k:Nu+k+3) = KIIX(N3,+k:Nwtk+3) 

case 2: X(Nin+k:Nu+k+3) = Kn2X(Nil+k:Nsi+k+3) 

case 3: X(Nu+kNw+k+3) = K1,X(Nu+kNih+tr+3) 

CIIC 4: X(Nlr+k:Nw+k+3) = K(iX(Nw+kNir+k+i) 
end (9) 

X(6*Ni8:7*Nl8) = (-j)*X(6*Nl8:7*N/8) (10) 
for k=Nr: 4 : N4+Na-l 
switch( yrNJ2(k:4) ) 

casc 1 :  X(Nin+k:Nn+k+3) = En,X(NIR+k:Nm+k+3) 

case ?: X(Na+k:Nix+k+3) = EizX(N7,+k:Nlx+k+3) 

case 3: X(Nx+kNia+k+3) = EliX(NistkNla+k+3) 

case 4: X(Nia+k:Nia+k+3) = ElaX(N7,+k:N7a+k+3) 

end (1 1) 
X = K m  KII .N X (12) 

Where V ~ l i  = P N I ~  p ~ n  . K S I  = diag(l.1,I.l). 
K U  = diag(W8, W,, WS, Wd. K 1 3  = diag(Ix1,W8.1), 
K I ~  = diag(W8, W,, I ,  Wx); also E,, = diag(-j, -j, -j, -j), 
En = diag(W,'.W,'.W,'.W,'), EE = diag(-j,-j,W~.-j), and 

Ell = disg(W,',W:,-j.W,') 

For the second stage. let loops = Ni2 and L=4, then: 

X = R ~ L N  RXN SNX 
fur k=olO"ps~l 

(13) 

switch(/lN(k)) 
case JAY: X(kL(k+I)L-I) = JLX(kL(k+l)L-l) 

ca3e-K: X(kL:(k+I)L-I)=K~X(kL(k+I)LI)  

cesr-3K: X(kL(k+l)Ll) = ErX(kL(k+I)LI) 

cn d 
End 

end (14) 

The proposed split-radix SIMD-FFT algorithm will 
work for N?32; nevertheless a similar approach is used 
for cases when N is 8 and 16. As in the radix-2 case, the 
minimum data size that can be processed using the ideas 
behind this algorithm is eight. 

Operations defined for the first stage (eqs. 8-12) arc 
easily mapped into primitive-simd-operations: all data 
accesses are linearly and contiguous in memory, SN is 
the addition subtraction operation previously defined as 
well as the complex multiplication carried out in (9) and 
(11). It also should be noted that in the second stage, 
operations (13) and (14) can he merged into a single 
procedure, which is not shown here for the sake of 
simplicity. 

Ooeratians defined hv R , , w  and R , , N  can also take , .... 
advantage of the SlMD architecture. because they can 
he performed by accessing the highilow 64-hits of the 
SIMD register (that holds thc partial result) and stored i t  
in the appropriate memory location. From the 
implementation point of vicw, both operations (R,,,N and 
R 1 2 , ~ )  are merged into a single operation. Also 
reordering the elements in the SlMD register can 
perform operations defined by R21, N. The operation 
R l i , ~  is the same as 

For large N, the complexity of the scalar split-radix is 
4*N*log,(N) flops [SI; also it could he proved that the 
complexity for the split-radix SIMD-FFT algorithm is 
4*(N/S)*logjN) simd-flops. From simd-flops only point 
of view, the performance improvement for the split- 
radix (compared to thc radix-2) is 25%; nevertheless for 
both, the scalar and SIMD versions, the split-radix 
algorithm does not show a high rcgularity as in the 
radix-2 algorithm. Thus we can expect that its overall 
performance in a real application will be less than the 
rheoretical one. 

4. COMPUTATIONAL RESULTS 
Both algorithms were implemented in C along with 

inline assembly instructions, using Limn as OS an an 
Intel architecture (to allow portability only Plll SSE 
instruction set was allowed) and on a Motorola 
PowerPC (PPC) architecture 

The split-radix algorithm was fully rested on a 
PentiumIll (PIII-M with kernel 2.4.11; also the kernel 
was patched to he preemptihle) running at I .O GHz, with 
512M of RAM and 512K of L2-cache and on a 
Peintium4 (P4 with kernel 2.4.13) mnning at 1.4 GHz. 
with 512M of RAM and 256 of L2-cache. CPU clocks 
were measured using the time-stamp countcr [IO], and 
used to calculate the time performance of the split-radix 
and radix-2 SIMD-FFT implementations. 

In table 2 the elapsed-time to complete a basic 
operation (complex addhub) ior both architectures is 
shown. It is important to note that the elapscd-time only 
Iollows a linear relationship with the input data size 
within ranges; if the relationship is broken (N=2" and 
N=Z" for PI11 and P4 respectively) then for the real 
implementation it is recommended to loop-unroll the 
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basic operation to improve the final time-perlormance 
(values in table 2 came from a loop version of the code 
shown in table 1). To predict the timc performance of 
the SIMD-FFT algorithms the values shown in table 2 
are multiply by (5/4)*Iog,N and 10g,N for thc radix-2 
and split-radix respectively (see italics in table 3). 

Table 2 
Time rmformance lor the c~mplex addlsub owration. The 
mean value far IO'iterations is shown. 

The procedure used to compare the time performance 
betwcen both implementations was to perform the direct 
Fourier transform of complex-input data, for length from 
2' up to 214 elements for I D  arrays. The transform was 
performed repeatedly (10' iterations) lor a particular 
size, and repeated 10 times. Also, any one-time 
initialization cost is not included in the measurements. 

In Table 3 the time performance of the split-radix and 
the radix-2 SIMD-FFT are s h a m  (best case). For small 
numbers (N5512) the radix-? version has a better 
performance (in the average); nevertheless for large 
numbers (NZ1024) that situation is reversed the split- 
radix's improvement ranges from 2.5% unto %I%, 
where the percentage factor is: 100*(TKADE.2fTspLm. 
RAD= - 1). This performance behavior can be explained 
recalling that the split-radix algorithm presents an 
irregular math operation pattern (compared to the radix- 
2 algorithm), and t h i s  fact affects its overall 
performance for mid-range numbcrs (128-512). whereas 
for large number, due to its smaller number of simd- 
flops (compared to the radix-2 case), its time- 
performance is improved. Also note that the estimated 
mean value for the time performance is accurate for the 
radix-2 case, whereas for the split-radix a significant 
difference i s  observed. The author expects, based on the 
estimated time-performance that the actual time- 
performance of the split-radix can be further improve. 

. 

5. CONCLUSIONS 
The split-radix SIMD-FIT algorithm w a ~  derived and 
implemented following the computational framework for 
SIMD architectures introduced in 131; its time 
performance shows an improvement over the radix-2 
SIMD-FIT [I]; however, i t  is less than the theoretical 
bound predicted on a simd-flops based analysis; the 
author expects to get closer to the theoretical bound in a 
near future. Results shown in this paper, confirms that 
the memory access pattern and regularity of math 

operations, in any given algorithm, have a great impact 
in the overall time performance. 

Table 3 
Time performance for the ID complex input data. The actual 
and predicted m a n  value (w) for I d  iterations are shown. 

MEAN TIME (MICROSECONDS) 

0.53 
(0.75) 
1.83 1.64 1.23 1.13 

(1.2) 11.5) 
4.19 3.72 2.84 2.66 
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