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Abstract-To permit the non-invasive study of the 
response of the retina to spatially patterned stimuli, an optical 
imaging apparatus that can deliver a video-based visual 
stimulus to the retina while imaging the functionally correlated 
intrinsic signal response in the rear infrared (IR) was 
developed. Measured changes in reflectance in response to the 
visual stimulus are on the order of 0.1% to 0.5% of the total 
reflected intensity level, which makes the functional signal 
difficult to detect by standard methods because it is masked by 
the other physiological signals. In this paper, we apply 
Principal Component Analysis (PCA) and Independent 
Component Analysis OCA) methods such as JADE and Fast- 
ICA to extract the signals present on the resulting videos. From 
our dataset of 140 different experiments performed on cats, in 
65 YO of the cases the algorithms can detect and extract the 
patterned stimuli. Careful analysis of the results may give an 
insight of the processes present during the stimulation of the 
retina. 
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I. INTRODUCTION 

A fundus camera was modified to permit collection of 
retinal images with a cooled CCD camera in the near IR, 
while delivering a visible patterned stimulus generated by a 
computer driven LCD display. The patterns of visual stimuli 
tested included counter flickering checkerboards of differing 
spatial extent, designed to systematically map the imaged 
field. Recordings were conducted in 20 sec blocks with a 3 
sec stimulus period. The IR illumination wavelengths 
ranged from 750 to 860 nm. Measured changes in 
reflectance in response to the visual stimulus are on the 
order of 0.1% to 0.5% of the total reflected intensity level 
which makes the functional signal difficult to detect by 
standard methods since it is masked by the other signals that 
are present. 

Figure 1 shows the frames from a single experiment. 
Response changes in the reflected intensity due to the 
stimulus are not readily apparent. In this work PCA and two 
methods for ICA: Joint approximate diagonalization of 
eigen-matrices (JADE) [ 111 and the fast fixed-point 
algorithm (Fast-ICA) [12] are applied in an attempt to 
separate and to understand the signals present in the cat 
retina during the period of stimulation. The better we 
understand the functionality of the cat retina, which is 
anatomically simpler than the human retina, the better we 
will understand the functional activity of the human retina. 

As early as 1949, Hill and Keynes linked the activity of 
the nerve cells with changes in their optical properties [l]. 
In 1986, Grinvald et all. [2] showed that changes in the 
optical properties of the tissue could be used to study the 
functional architecture of the cortex. Villringer and Chance 
[3] used near-infrared light to measure non-invasively brain 
activity in humans through the skull. Kardon et al. [4] 
reported the first device, called the Optical Imaging Device 
for Retinal Function (OID-RF) to directly image the human 
retina to record changes in 700 nm light caused by retinal 
activation in response tci a 535 nm stimulus. Barriga et al. 
[5, 61 used ICA to extract the functional signal from the 
videos obtained with the OID-RF. T'so et al. [7] used a 
device similar to the O[D-RF to image the response of a 
cat's retina to a patterned[ stimuli. 

11. METHODOLOGY 

A. Data Pre-processing 

The data set contains 7 files with 20 different 
experiments, each one generating an epoch (video). An 
epoch consists of 20 frames of 144x192 pixels each, at a 
frame rate of 2 Hz for a total recording time of 10 sec. A 
sample of the resulting frames is shown in figure 1. As we 
mentioned before, no significant change in the images can 
be seen during the period of stimulation (second row of 
images). The basic pre-processing procedure consists of 
averaging each two fraimes and then subtracting the first 
averaged frame to measure only changes due to the 
stimulation. The result is 9 averaged frames, where the first 
frame is baseline (no stimulus), the next three are stimulus 
and the remaining five frames are post-stimulus. Figure 2 
shows a sample of these '9 frames. 

Fig. 1. Frames from a cat video recording 
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Fig. 2. Resulting frames after pre-proccssing 

B. Principal Component Analysis (PCA) 

The purpose of principal component analysis (PCA) is 
to derive a relatively small number of decorrelated linear 
combinations (principal components) of a set of random 
variables while retaining as much of the original information 
as possible. Using PCA the functional signal can be 
reconstructed using a subset of the principal components [8]. 

C. Independent Component Analysis (ICA) 

Given a set of observations of random variables 
x = [x1 ( t )  ,x2 ( t ) ,  ..., xn ( t ) ]  , assume that they are 
generated as a linear mixture of independent components 
s = [sl ( t  ) , s2 ( t )  , .. .) s, ( t  )I , as in 

x = As, (1) 

where A is some unknown matrix. ICA consists of 
estimating both the matrix A and the sources s, when we 
only observe x. ICA methods assume statistical 
independence between the sources, and use maximization of 
nongaussian components to separate the sources [9]. 

There are many methods available for ICA [9, lo], but 
in this work we applied two of the most successful: Joint 
approximate diagonalization of eigen-matrices (JADE) and 
the fast fixed-point algorithm (Fast-ICA). 

D. 
(JADE) 

Joint Approximate Diagonalization of Eigen-matrices 

The JADE algorithm was proposed by Cardoso and 
Souloumiac in [ I l l  and is based on the joint 
orthogonalization of the cumulant tensors. The cumulant 
tensor is defined as a four-dimensional array whose entries 

are given by the fourth order cross-cumulants of the data as 
in: 

Q, = { c u m ( x i , x j , x k , x / )  11 5 i ,j ,k,Z I n I . (2) 

The cumulant matrix Fv(M) associated to any n x n 
matrix M is defined as: 

where mkl are the elements of the matrix M. We work with 
the case that the data follows the ICA model with whitened 
data 

x = VAS = WTs,  (4) 

where the whitened matrix is denoted by WT. Eigenvalue 
decomposition (EVD) can be viewed as a diagonalization, 
then the JADE algorithm takes a set of matrices Mi, 
i=l ,..., m, and tries to make the matrices C=WF(MJW as 
diagonal as possible. The contrast function to measure the 
diagonality of the matrix C is: 

After some manipulations [ 111, the contrast function can 
be expressed as: 

2 

4JADE ( w )  = C lcum (ui 3 ~j ~k 7 Y /  )I (6) 
i, j ,k , /= l , . . ,  n 

where yi= Wxi. Maximization of 4JADE is one method of 
joint diagonalization of F(MJ. 

E. Fast Fixed-point Algorithm (Fast-ICA). 

The Fast-ICA algorithm was developed by Hyvarinen 
and OJA in [12] and is based on the minimization of the 
gaussianity based on the negentropy concept. To define 
negentropy we have to use the concept of differential 
entropy, which is defined as: 

(7) 

where S is the differential entropy of the random vector X 
with probability density function p,. Then, the negentropy is 
defined as: 

J ( P x )  = S ( 4 , ) - S ( P x ) ,  (8) 

where 4x is the gaussian density with the same mean and 
variance asp,. The Fast-ICA algorithm then uses a fixed 
point algorithm to maximize negentropy. 
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Fig. 3. First six principal components of a video with their correspondent 
power spectral density. 

The algorithm then computes the demixing matrix W in 
an iterative fashion, computing one row at a time using 

(9) 

where wig+Z) is the i-th row for the (j+l)-th iteration and y 
is the whitened version of the data. 

111. RESULTS 

A. Principal Component Analysis 

After applying PCA to the data and backprojecting it to 
the time domain, we noticed that in many cases the 
components with the highest eigenvalues showed clear 
sinusoidal patterns. Figure 3 presents the first 6 principal 
components for an experiment with horizontal stimulus. It is 
clear how components 4, 5 and 6 have a sinusoidal shape, 
fact confirmed by its power spectral density (on the right 
next to the principal components). 

B. Independent Component Analysis 

Both the JADE and the Fast-ICA algorithms yielded 
similar results when applied to the data. Figure 4 shows the 
JADE separation of an experiment with a spot stimulus. It is 
clear how the stimulus is isolated in the sixth independent 
component (Fig. 4F). 

Figure 5 shows the separation of six input sources as 
estimated by the Fast-ICA algorithm. This figure shows the 
stimulus bar applied to the cat retina in the third component 
(Fig. 5C). Figure 6 shows the JADE separation for the same 
experiment, here the stimulus bar is on component 1 (Fig. 

6A). Comparing both figures we notice similar results for 
the detection of the stimulus, but the rest of the components 
are slightly different. 

Not all the epochs showed the stimulation signal, in 
many cases due to changes in the settings of the 
experiments. From the seven different experiment settings 
performed, three did not present any response at all. These 
experiments corresponded to the cases where a background 
was added to the stimulus and when the LCD display was 
rotated. From the remaining experiments, in 65% (52 out of 
80) of the cases the stimulus signal could be extracted. 

IV. DISCUSSION 

The sinusoidal patterns seen in the principal 
components may be attributed to physiological processes. 
The analysis of the principal components with the ancillary 
data could lead to a better understanding of these processes. 
If the physiological processes are decorrelated from the 
images we may obtain clearer pictures of the nature of the 
response to the stimulus. 

In figure 4 we can see how the JADE algorithm 
separates the stimulus input from other sources, as seen in 
the sixth component. Also notice how in the fifth component 
(Fig. 4E) there are a series of black and white stripes on the 
upper right comer of the images. These stripes do not 
correspond to any known physiological event, and are most 
likely to be caused by an illumination artifact. 

From figure 5 a horizontal stripe is noticeable in 
component 3 that correspclnds to the stimulus applied. Again 
as in the previous result, components 2, 3 and 4 (Fig. 4B, C 
and D) show the illumination artifact in the upper right 
corner of the images. In this case we only considered 6 
inputs for the algorithm; this helped us to avoid redundancy 
in the separation of the signals. Although it is not 
completely known how many physiological processes are 
present during the stimulation of the eye, but our long-term 
objective is to identify as many as we can in order to isolate 
the response of the retina 1.0 the stimuli. 

V. CONCLUSION 

Retinal responses to the patterned stimuli could be 
identified and isolated by the ICA algorithms. Future 
research is oriented to the analysis of a large amount of data 
from cat and macaque experiments. Given that the cat retina 
is simpler than the humlan retina, it will give us useful 
information to better understand the phenomena present 
during stimulation of the human eye. 
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