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Abstract 

The study of the effects of scarmirig on texture 
features is o/ great interest to computer-based 
screening systems. A mathematical model is developed 
for understanding how the original image gets 
distorted due to conhast variability and geometric 
distortion [tiherent in the scanning process. Both 
quarrtitafive and qualifative results ffor sixty common 
fexfure features) are given. 

1. Introduction 

With the current integration of digital technology in 
medicine and the development of digital diagnostic 
tools (i.e. Automated Screening Systems); there has 
become an increasing need to digitize analog 
radiograph images. This process is accomplished 
through the use of laser scanners or charge-coupled 
device (CCD) scanners. Despite routine calibration and 
quality control, both types of scanners have operational 
constraints which introduce various artifacts. 

A quantitative approach as suggested by Halpern [ I ]  
uses a calibrated test pattern for direct quality control 
with the digital media. This test pattern is designed to 
help characterize the various scanning artifacts and 
noise. An example test pattern is shown in Figure 1, In 
our paper, we will use the test pattern in Figure 1 to 
describe many of the artifacts associated with the 
scanning process. 

A mathematical model for describing the distortion 
of the original image due to the scanning process will 
also be developed. Our model will focus on the 
contrast and geometric distortions. We will not discuss 
sampling and quantization issues. 

The rest of the paper is organized into five Sections: 
the methods, the mathematical model for scanning 
Section, the texture feature section, the results, and the 
conclusion. 

2. Methods 

2.1 Apparatus 

The digitization device is a Vidar VXR-12 CCD 
Scanner with optical density range of .OO - 3.85 in 
optical density units. The VXR-I2 is equipped with a 
16-bit depth sensor array for scanning. The scanner 
also has many features, which can be controlled 
through the TWAIN32 software package. Some of 
these features include line averaging, dark enhance, 

Figure 1. Tbe Film Test Pattern. The test 
pattern consists of :LO squares, numbered 
from left to right, top to bottom. 

exposure time (IO - 40ms), and various look-up tables. 
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The scanner is also able to scan at multiple resolution 
levels (72 - 570 dpi). For the experiments conducted, 
the scanner was set at 300 dpi with a 12-bit pixel depth 
and a linear look up table. The exposure time was set 
to an optimized value based on contrast and entropy. 

The calibrated film test pattern (Figure 1) is based 
upon a widely used test pattern from The Society of 
Motion Picture and Television Engineers (SMPTE). It 
is however, specifically designed to evaluate laser and 
CCD digitizers. The film itself is calibrated so that it 
varies less than .IO optical density units from the 
digital synthetic pattern. This is easily verified with a 
densitometer. 

2.2 Procedure 

Digitizer performance was tested both subjectively 
and quantitatively. The various subjective and 
quantitative test measures performed are described 
with their associated squares on the film test pattern as 
follows: 

High Contrust Discriminution - Determined by the 
horizontal, vertical and diagonal line pairs. The 
limiting resolution is defined in terms of the distance 
where the excursion of the profile is one thud of its 
original ampliNde. This is associated with squares 
numbered 1-8 and 13-20, testing vertical and 
horizontal (1,4,17,20), horizontal only (2,3,18,19), 
vertical only (5,8,13,16), and diagonal (6,7) contrast 
discrimination. 

Low Contrast Discriminulion - Determined by the 
number of low contrast squares visible in each column 
of the center step gradients. The squares are -9% 
different in optical density units from the gradient bar 
containing them. The limiting contrast is defined as the 
square where the pixel values are one third of the 
values in the largest square. This is associated with 
squaresnumbered IO, 11, 14, 15. 

Cruy Scale Response - Determined by each of the 
16 steps in the step gradients, which should be visibly 
distinct from the adjacent steps. The mean pixel value 
at each step can he plotted against the known optical 
density units to determine the gamma correction factor 
for the scanner. The standard deviation of pixels in 
each step, when plotted against the known optical 
density units, can be used to measure the relationship 
of noise to optical density. There are gradient bars 
located next to each of the 20 segments in the test 
pattern. These will help determine whether there is 
spatial variation in gray-scale response across the 
image. Every square has a vertical step gradient bar on 
the left. The squares numbered 9 and 12 have large 
step vertical gradient barsflinear gradients, while 2 and 

3 have large horizontal step gradient barsflinear 
gradients. 

Fine Line Reproduction - Determined by the fme 
lines within the test pattern, which should be visible 
and continuous. This is associated with squares 
numbered 5, 8, 9, 12, 13, 16, 18, and 19. The squares 
numbered 5 ,  8, 9, 12, 13, 16 have vertical fine lines 
within gradients, while I8  and 19 have horizontal fine 
lines in gradients. 

Geometric Distortion - Determined by the 20 square 
segments of the test pattern. Each segment is the same 
size and square except for the added step gradient bar 
to the left of each segment. Squares numbered 18 and 
19 have special patterns to check geometric distortion. 

Homogeneity - Quantization noise will he evident in 
the regions that exhibit constant gray level properties. 
Random independent noise can also be observed 
within the constant gray level regions of the test 
pattern. A plot of standard deviation of the pixel values 
versus the known optical density units for the area 
under observation will help relate optical density to 
noise. For testing homogeneity, we can use the fust 
border of the entire image, and squares numbered 
1,4,17, and 20 which have constant regions. 

Film Movement - Determined by the line pairs, 
which should appear straight, and there should not he 
any stretching or splicing along the horizontal and 
vertical axes. This is associated with squares numbered 
I ,  4, 5 ,  8, 13, 16, 17, and 20. We can use vertical l i e  
pairs for horizontal movement and horizontal line pairs 
for vertical movement. We can also examine the entire 
test panem image for possible rotations. 

Light Leukuge - Determined by the black border 
around the image and separating each of the 20 square 
segments. These border areas should not contain any 
light areas which may have leaked from an external 
source, or the adjacent segments. This can he checked 
by examining the borders of the scanned image, and all 
squares with line pairs, such as the squares numbered 
18 and 19. 

3. A Model for Scanning Distortions 

In this Section, we develop a mathematical model for 
describing different artifacts due to the scanning 
process. We primarily focus on geometric distortions 
and contrast variation. To help recognize the effects on 
different statistical features, we fmt develop a spatial 
model and then derive its effects on the spectral model. 

Let the original image be denoted byh(x,,x2). We 
want to model contrast variation residual effects after 
any sensor corrections, such as gamma correction, 
have been applied. We use a positive amplitude 
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function &,xz) to account for the variability, and 
write u(xI,x2)h(xI,xz) for the contrast-altered image. 

We note that image contrast can be enhanced 
through processing the scanned image. Also, we note 
that although image contrast is extremely important for 
visual screening, its impact on computer-based 
screening is not so clear. 

We model geometric disfortion andfilm movement as 
a coordinate transformation 

where the original image coordinate points ( x l , x z )  get 
mapped to (4 (xl,xz),4 ( x I . x z ) ) .  Without loss of 
generality, we write the more general expression 

expressing the scanned image g(xI,xz) in terms of the 
original, continuous-space image h(x, ,x2). 

Thefine line reproduction characteristic suggests the 
introduction of a band-limited assumption for the 
scanned image. To relate the band-limited assumption 
to the original image, we begin with the two- 
dimensional Fourier Transform expression for 11 given 

@ (XI,., ) = (4 (XI 9x2 1, 4 (XI 9x2 1) 

&I .XZ = a (XI ,XZ ) h (4 (XI ,XZ b ~ ( ~ I J Z  )) (1) 

by 
&.x2)= j j H ( s , ~ f z ) e x P l i ~ ~ h ~ l  +fzxz)Elj;df2 

From (1). we have that the scanned image can be. '  , 

expressed in terms of the Fourier Transform expansion 
of the original image using 

g(xl ,x2) = j j ~ h  ,fz) &x2 ) e x ~ l i ~ ~ ( x ~ . x ~ )  

+ f Z 4 ( ~ I ~ ~ Z ) ) l d h d f 2  ( 2 )  
From (2), we see that if the original signal is band- 
limited within the xI -x2 coordinate system, the 
scanned image will also be band-limited for the same 
frequency region within the deformed 4 - A  
coordinate system. Alternatively, it is easy to see that if 
we assume that the scanned image is hand-limited 
within the x, - x 2  coordinate system, the original 
image will have to be band-limited for the inverse; 
coordinate system @-I. Thus, it is clear that a band- 
limited assumption for a particular coordinate system 
can lead to band-limitness for another coordinate 
system through a change of variables. For simplicity, 
we assume that the scanned image is band-limited with 
respect to the deformed 4 - coordinate system. In 
addition, we simplify our expressions for real images. 

polar representation of the Fourier Transform of the 
original image. Due to the conjugate symmetry in the 
Fourier Transform of real images, we only consider the 

Let HCf,,f2)=IH(h,fz]ex~~@(f,,fz)1 be the 

The film test patterns are usually restricted to be 
made up of lines of pixels. This motivates our model 
for the Fourier spectrum of the original image as a 
line-specbum, along (say) the f, direction: 
H ( f , , f z ) =  H ( f , ) G l f z ) .  We can show, (through a 
long derivation), that in this case, the error is bounded 
above by (omitted due to lack of space): 

Ig(x1 9x2 ) - 2 M  0 (XI 9 xz )COS@(Xl2 X 2 . f l  * fz 1 

hl = fl -A,, 
hz =: f 2  -fz,, 

2 0  (~l,~z)pz,o ( ~ ; , . . . p ( ~ I . ~ 2 ) + ~ J , . h . I U p  1 
where: 

pn," = I n ~ l ~ l h z ~ 1 H h , f 2 ] 4 4 ~ ,  n,m=1,2,3, ... 

We [elurn to (3) to note that our model can be used 
to predict the distortion to both the phase and the 
amplitude of each Fourier Harmonic of the original 
image. Furthermore, it is clear that the distortion is also 
a function of the spread of the spectrum of the original 
image. In general though, we can see that significant 
changes to the phase can occur as a result of geometric 
distortions. 

4. Statistical Texture Feature Analysis 
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For the statistical feature analysis, we used 60 common 
texture features that are often used in screening 
systems. These features are sorted into sets as follows: 

First Order Statistics 
Mean, Median, Mode, Variance, Skewness, 
Kurtosis, Energy, Entropy. 
Spatial Gray Level Dependence Matrices [3] 
Angular Second Moment, Contrast, Correlation, 
Sum of Squares: Variance, Inverse Difference 
Moment, Sum Average, Sum Variance, Sum 
Entropy, Entropy, Difference Variance, Difference 
Entropy, and two Information Measures of 
Correlation. There are four angular gray level 
dependence matrices for each of the above 13 
texture measures. The mean and the range of the 
four values of each of the 13 texture measures 
comprise a set of 26 texture features. 
Gray Level Difference Statistics 
Contrast, Angular Second Moment, Entropy, 

Mean 
Neighborhood Gray Tone Difference Matrix [2]  
Coarseness, Contrast, Busyness, Complexity, 
Strength. 

Coarseness, Contrast, Periodicity, Roughness 
Laws Texture Energy Measures [5 ]  
LL, EE, SS, LE, ES, and LS Kernel Energies 
Fractal Dimension Texture Analysis [4,6] 
Hurst Coefficients (4 resolutions) 

Radial Sum, Angular Sum. 

Statistical Feature Matrix 

Fourier Power Spectrum [73 

The 60 features in each of the 8 sets are calculated 
for all 20 of the segmented squares in the synthetic test 
pattern and for SO scan trials of the segmented squares 
in the digitized film pattern. The sample size of 50 
was chosen, because it is where the mean of each 
individual feature started to converge to a specific 
value. The convergent value mean is compared to the 
feature value for the synthetic digital image with both 
the T-Test and Wilcoxon Rank Sum Test. Statistical 
significance and feature sensitivity to scanning noise is 
determined at an a = .OS. 

5. Results 

5.1 Qualitative Results 

In this subsection, different experiments are described 
that are used to demonstrate different visual artifacts. 

The high-contrasf resolution experiments 
exhibited a large amount of sampling noise. These 
errors can he attributed to the limitations on the film 
feeder within the scanner and the resolution of 300 dpi. 
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Figure 2. Artifacts in the scanned images. 

The motion of the film through the feeder brought 
about aliasing effects that were noticeable in all three 
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directions of the High contrast line pairs. We note the 
blurring effect with the higher resolution line pairs in 
Figure 2(a). 

The low-confrarf discriminafion experiments 
exhibited some quantization noise within the higher 
intensity portion of the step gradient. In Figure 2(b), 
we note that the small, low contrast blocks were in 
some cases not visible. 

The gray-scale response gradients show a slightly 
logarithmic nature compared to the linear nature of the 
synthetic digital image. This effect was expected due 
to the gamma parameter of the scanner. The 
unexpected problems with the gray scale response 
were the random noise and quantization artifacts seen 
in the continuous gradient function. In Figure 2(c), we 
note that the edges between levels are jagged from 
quantization and this creates a “sand dune” or “water 
ripple” effect. 

The fine line reproduciion has the aliasing effects 
discussed earlier, which cause the highest resolution 
line pairs (3.5 Ipimm) to appear as a constant block. 
The geomerric distortion was negligible and both 
images retained the same distance measure for each 
side of the segmented squares. Film movemenf was 
noticeable for each of the scanning trials. In Figure 
2(d), we note the split in the vertical line pairs that 
appear as a warped line. Also, we note the complete 
horizontal shift present less than 500 pixels helow the 
warping. 

Light leakage is noticeable in the borders of the 
scanned images. This can he seen as light shadows. In 
Figure Z(e), we note the striping effect fiom the lmes 
that will be scanned. 

3.1 Quantitative Results 

Overall, even with Gamma correction, the statistical 
tests showed a significant difference between the 
optical density in the original image and the scanned 
copies. The difference was significant enough to affect 
all the features. This difference will most likely he 
significantly less for laser scanners. 

Nevertheless, we are still extremely interested in the 
Variability of the scanned copies. Significant variability 
is a sign of instability in a texture feature, and it should 
he taken into account when using the features for 
computerized screening. 

We note that most of the variability was not large. 
For example, for the mean of the pixels in each square, 
we found that the maximum of the mean absolute 
difference was ahout 0.5, when the mean value varied 
from 100 to 200. Thus the difference is less than 
0.25%. 

Resolution problems such as in fine line 
reproduction can have a significant effect on the 
variance of the featurcs. For example, for square 
numbered 19, fifieen out of the sixty features exhibited 
their largest variance over all the other squares. Both 
spectral-domain features exhibited their largest 
variance over square numbered 19. This observation 
motivates the further study of the spectral domain 
Variability due to scanning (see Section 3). 

Scanning artifacts affecting high contrast 
discrimination and hoinogeneity can also have a 
significant effect on the variance of the features. For 
example, for squared number 4, fourteen out of the 
sixty features exhibited their largest variance over all 
the other squares. 

In general though, wc cannot really associate single 
squares with specific scanning artifacts (see Section 2). 
This observation ftnther complicates the analysis. 

6. Conclusions 

Scanning artifacts do increase the variance of textural 
features used for computer screening. The use of 
mathematical scanning models can help us understand 
the extends of the effects, of the artifacts. 
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