CLASSIFICATION UNDER A MULTIVARIATE BERNOULLI: AN APPLICATION TO PNEUMOCONIOSIS

T. Cacoullos and M. Pattichis
University of Athens and University of New Mexico

SUMMARY

Two training samples radiographs of 158 pneumoconiosis subjects, allocated in one of two categories, led to the classification problem for two populations under a six-dimensional Bernoulli distribution. Five classifiers: logistic regression, Bayes, k-means, simple and weighted sums, are considered; their apparent misclassification errors are evaluated; they range from 9% to 12%; the logistic has the smallest error, 9%.

1. INTRODUCTION

The discrimination problem below for a multivariate Bernoulli distribution arose in relation to the classificatin of chest radio-graphs of a number of subjects (pneumoconiosis patients - miners in New Mexico) into one of three q-categories q_{0}, q_{1}, q_{2} (according to the ILO, International Labour Office, categorization into main categories $p, q, r, s, t, u)^{*}$. More specifically, out of $n=158$ subjects, 126 were classified as $q_{0}, 26$ as q_{1} and only 6 as q_{2}; the rater (radiologist) based his q classification on his observing the presence (1) or absence (0) of a mark (e.g., opacity) in each of the six regions R_{1}, \ldots, R_{6}, into which the two lungs were divided for observational purposes; R_{1}, R_{2}, R_{3} for the right lung and R_{4}, R_{5}, R_{6} for the left lung (see Figure 1); R_{1} and R_{4} are the two upper regions, R_{2} and R_{5} are the middle ones, and R_{3} and R_{6} the lower ones.

[^0]Thus for describing the regional (spatial) lung variation, we define Bernoulli random variables (rv) $X_{i}=1$ or 0 according to the appearance (1) or not (0) of a mark in each region R_{i}; hence each radiograph gives rise to a six-dimensional Bernoulli rv

Right		Left	$\mathbf{X}=\left(X_{1}, \ldots, X_{6}\right) . \quad$ For \quad example, $\mathbf{x}=(1,0,0,1,0,0)$ means marks only in the upper parts of the lungs (the middle and lower
Upper	$R_{1}(U R)$	$R_{4}(U L)$	
Middle	$R_{2}(M R)$	$R_{5}(M L)$	parts are "clear").
Lower	$R_{3}(L R)$	$R_{6}(L L)$	

2. SOLVING THE DISCRIMINATION PROBLEM

The preceding introduction leads to the following statistical discrimination problem: Given a training sample of n subjects classifed (by a doctor) into one of the q subcategories q_{0}, q_{1}, q_{2}, what is a reasonable (statistical) rule for allocating (classifying) a new subject (radiograph) $\mathbf{x}=\left(x_{1}, \ldots, x_{6}\right)$ to one of the categories (populations) q_{0}, q_{1}, q_{2} ? In the present pneumoconiosis example, the sample sizes $n_{0}=126, n_{1}=26$ and $n_{2}=6$, from q_{0}, q_{1} and q_{2}, are actually random variables obtained from the mixutre of $n=n_{0}+n_{1}+n_{2}=126+26+6=158$ chest radiographs, a sample from a large population of q-type patterms of pneumoconiosis. However, here we will apply the logistic and other discrimination procedures as if separate training samples were given from the q-categories, in view of the smalleness of the sample sizes and the estimation problems for mixtures (for a discussion of these matters see Anderson, 1972, 1973). Furthermore, only $n=6$ patterns (in fact very little differing from q_{1}-patterns) were allocated to q_{2}, making it impossible to estimate the parameters involved in the discrimination problem; hence, we pooled the $n_{2} \quad q_{2}$-patterns with the $n_{1}=26 \quad q_{1}$ patterns, thus arriving at a 2-category
discrimination problem with $n_{0}=126 q_{0}$-patterns and $n_{1}^{\prime}=n_{1}+n_{2}=26+6=32$ q_{1}-patterns.

The preceding reduction to a two-category discrimination problem, in addition to the smallness of $n_{2}=6$, takes also into account the fact that the general optimum Bayes discriminatory rule, with respect to prior probabilities P_{0} for q_{0} and P_{1} for q_{1} $\left(P_{0}+P_{1}=1\right)$, allocates a sample point \mathbf{x} to q_{0} if

$$
\begin{equation*}
P_{0} p_{0}(\mathbf{x}) \geq P_{1} p_{1}(\mathbf{x}) \quad \text { or } \quad P\left[q_{0} \mid \mathbf{x}\right] \geq P\left[q_{1} \mid \mathbf{x}\right] \tag{1}
\end{equation*}
$$

(and to q_{1}, otherwise), where $p_{j}(\mathbf{x})$ is the probability function of \mathbf{x} under $q_{j}(\mathbf{x})$ $(j=0,1)$ which in the present 6 -dimensional Bernoulli case involves $2^{6}=64$ unknown probabilities, the probabilities

$$
p(\mathbf{x})=P\left[X_{i}=x_{i}, i=1, \ldots, 6\right], \text { with } x_{i}=0 \quad \text { or } 1, \quad i=1, \ldots, 6
$$

$P\left(q_{j} \mid x\right)$ denotes the posterior probability of q_{j} given \mathbf{x}. Obviously much larger (training) samples n_{0} and n_{1}^{\prime} are necessary for estimating 63 parameters (since $\left.\sum_{\mathbf{x}} p(\mathbf{x})=1\right)$, though in the present case one q_{0} pattern, the $(0,0,0,0,0,0)$ has frequency 76% (should perhaps be classified into the p-category, i.e., normals) under q_{0} and another 10 or so with a frequency of about 1% (see Table 3.1 below). In fact, of the 64 possible patterns $\mathbf{x}=\left(x_{1}, \ldots, x_{6}\right)$, only 11 different ones appeared. Nonetheless, the estimation problem of the $p_{j}(\mathbf{x})$ does not become any easier, since the (maximum likelihood) estimates of $p(\mathbf{x})$ for the missing patterns (with zero frequencies) are zero (of course, not true). Another consequence of this is that it is not possible to classify a future \mathbf{x} which has not appeared in the training sample, at least by Bayes rules, which involve the (unknown) $p_{j}(\mathbf{x})$.

The preceding considerations point out the difficulties in the treatment of the present discrete multivariate discrimination problem, especially for Bayes discrimination rules in view of (1), where the $p_{j}(\mathbf{x})$ have to be estimated from the available small training samples.

In the sequel, in addition to the logistic regression (discrimination) approach and the (plucg-in) Bayes and k-means rules, we use simple ad hoc classifiers, such as the simple sum $s=x_{1}+\cdots+x_{6}$ or a weighted sum s^{*} (see (11) below) of the x_{i}, in view of the fact that pneumoconiosis was shown to start in the upper lungs ($x_{1}=1, x_{4}=1$, say) and progresses (more 1's) downwards (q_{2}-patterns have, on average, more $x_{i}=1$; see Table 1 and 5 below).

3. SEVERAL CLASSIFIERS AND THEIR PERFORMANCE

In this section, we give the classifiers, as motivated in the preceding section, along with their coresponding Apparent (as estimated from the training samples) Total Misclassification (probabilities) Error (ATME); this is simply the percentage of wrongly classified patterns of the training samples.
The training samples are summarized in the following

Table: The \boldsymbol{q}_{0} and \boldsymbol{q}_{1} patterns

q_{0} patterns (126)			q_{1} patterns (32)		
Pattern	Frequency	Percent	Pattern	Frequency	Percent
$000-000$	$96 / 126$	76%	$000-100$	$1 / 32$	3%
$000-100$	$1 / 126$	1%	$100-100$	$13 / 32$	41%
$001-101$	$1 / 126$	1%	$100-110$	$1 / 32$	3%
$100-000$	$6 / 126$	5%	$110-100$	$1 / 32$	3%
$100-100$	$18 / 126$	14%	$110-110$	$10 / 32$	31%
$101-001$	$1 / 126$	1%			
$110-100$	$1 / 126$	1%	$111-110$	$1 / 32$	3%
$110-110$	$1 / 126$	1%	$111-111$	$5 / 32$	16%
$111-111$	$1 / 126$	1%			

Note the big overlap of q_{0} and q_{1} at the pattern 100-100, which tends to increase the misclassification errors.
A. Logistic Discrimination. In the logistic form for the posterior probabilities for $s=2$ categories in the well-known Cox-Day-Kerridge approach the fitted $y=0$ or 1 , in the form
$E(y)=\frac{1}{1+e^{\boldsymbol{\sigma}^{\prime} \mathbf{x}}} \equiv \pi(\mathbf{x})=\pi \operatorname{logit} y=\log \frac{\pi}{1-\pi}=\boldsymbol{\alpha}^{\prime} \mathbf{x}=\alpha_{0}+\alpha_{1} x_{1}+\cdots+\alpha_{s} x_{s}$
In the present application, with $\mathbf{x}=\left(x_{1}, \ldots, x_{6}\right), x_{i}=0$ or $1, s=6$.
Using the q_{0} and q_{1} training samples from q_{0} and q_{1}, a logistic regression program (see, e.g., Hosmer and Lemershow, 2000) gave us the logit in (2) with $s=6$ equal to

$$
5.547+0.187 x_{1}-1.925 x_{2}-4.593 x_{3}+0.187 x_{4}-0,966 x_{5}-1.079 x_{6} .
$$

If d_{0} denotes allocation of an \mathbf{x} to q_{0} and d_{1} to q_{1}, then we get the logistic

Table A Logit Classifier

	d_{0}	d_{1}	total
q_{0}	114	12	126
q_{1}	2	30	32
total	116	32	158

$$
\begin{equation*}
\text { ATME }=\frac{12+2}{158}=0.09 . \tag{3}
\end{equation*}
$$

Table B. Bayes classifier

	d_{0}	d_{1}	total
q_{0}	125	1	126
q_{1}	15	17	32
total	140	18	158

B. The Bayes Classifier. The Bayes classifier (cf. (1)) gave the following Table B.

The Bayes classifier does better than the logit in classifying the q_{0} patterns (125 of the 126) whereas the logit is better in classifying the q_{1} patterns (30 of the 32). The

$$
\begin{equation*}
\text { Bayes classifier ATME }=\frac{1+15}{158}=0,10, \tag{4}
\end{equation*}
$$

slightly higher than the logit, with $\mathrm{ATME}=0.09$ of (3).
C. The \boldsymbol{k}-means classification $(\boldsymbol{k}=\mathbf{2})$. This classifier allocated an $\mathbf{x}=\left(x_{1}, \ldots, x_{6}\right)$ to the q category whose mean is closer (in Euclidean distance) to \mathbf{x}. The q-mean vectors $\overline{\mathbf{x}}_{0}, \overline{\mathbf{x}}_{1}$ are:

For $q_{0}, \overline{\mathbf{x}}_{0}=(0.643,0.286,0.214,0.571,0.143,0.214)$ and
for $q_{1}, \quad \overline{\mathbf{x}}_{1}=(0.824,0.529,0.235,0.941,0.529,0.235)$.

Table C. Two means classifier

	q_{0}	q_{1}	total
d_{0}	124	14	12
d_{1}	2	18	20
total	126	32	158

The 2-means allocation is shown in Table C. Its

$$
\begin{equation*}
\mathrm{ATME}=\frac{14+2}{158}=0.10 \tag{6}
\end{equation*}
$$

equal to the Bayes ATME in (4).
D. A simple sum classifier. It is easily observed (see Table 1) that marks ($x_{i}{ }^{\prime} s$ 1) start appearing at the upper lung regions so that pneumoconiosis starts at the upper lungs and progresses downwards. Thus a reasonable and very simple, ad hoc, classifier of an $\mathbf{x}=\left(x_{1}, \ldots, x_{6}\right)$ can be based on the number of marks

$$
\begin{equation*}
s=s(\mathbf{x})=x_{1}+x_{2}+\cdots+x_{6}, \quad s=0,1, \ldots, 6 \tag{7}
\end{equation*}
$$

We evaluated the classifier:
Allocate \mathbf{x} to q_{0} if $0 \leq s \leq 1$; to q_{1} if $2 \leq s \leq 6$.

Table D. Sum classifier

	q_{0}	q_{1}	total
d_{0}	110	3	113
d_{1}	16	29	45
total	126	32	158

The corresponding allocation, Table D, gave a total error

$$
\mathrm{ATME}=\frac{16+3}{158}=0.12
$$

E. A weighted-Sum classifier. A more sophisticated classifier can be based on assigning bigger weights to $x_{i}{ }^{\prime} s$ corresponding to the middle and lower lung regions. This is accomplished by introducing some new random variables based on the 6 $x_{i}{ }^{\prime} s$. This was motivated by the representation, Teugels (1990), of an s-variate Bernoulli rv $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right)$ with probabilities

$$
p(\mathbf{x})=P\left[X_{1}=x_{1}, \ldots, X_{s}=x_{s}\right], \quad x_{i}=0,1 \quad(i=1, \ldots, s)
$$

in terms of a one-dimensional rv $\xi=\xi(\mathbf{x})$, taking 2^{s} values and defined by

$$
\begin{equation*}
\xi=\xi(x)=1+\sum_{i=1}^{s} 2^{i-1} x_{i}, \quad \xi=1,2, \ldots, 2^{s} . \tag{8}
\end{equation*}
$$

Indeed, there is a one-to-one correspondence between the $p(\mathbf{x})$ probabilities and the 2^{s} probabilities

$$
P[\xi(\mathbf{X})=\xi(\mathbf{x})] .
$$

Here $s=6$ and we define a ξ transform for the right-lung triplet $\left(x_{1}, x_{2}, x_{3}\right)$ $(s=3)$ namely,

$$
\begin{equation*}
\xi_{1} \equiv \xi_{1}\left(x_{1}, x_{2}, x_{3}\right)=1+\sum_{i=1}^{3} 2^{i-1} x_{i}=1+x_{1}+2 x_{2}+4 x_{3}, \quad \xi_{1}=1, \ldots ., 8, \tag{9}
\end{equation*}
$$

and similarly for the left-lung triplet $\left(x_{4}, x_{5}, x_{6}\right)$

$$
\begin{equation*}
\xi_{2} \equiv \xi_{2}\left(x_{4}, x_{5}, x_{6}\right)=1+x_{4}+2 x_{5}+4 x_{6}, \quad \xi_{2}=1, \ldots, 8 \tag{10}
\end{equation*}
$$

so that the resulting sum $\xi_{1}+\xi_{2}$ takes the 15 values $2, \ldots, 16$. Moreover, the sum, say s^{*}, of ξ_{1} and ξ_{2},

$$
\begin{equation*}
s^{*}=\xi_{1}+\xi_{2}, \tag{11}
\end{equation*}
$$

is expected to give a highter discriminatory power than the simple sum s of 6 , providing more choices for the separating value, s_{0}^{*}, say, of s^{*} for the two categories, that is, allocate to q_{0} if $s^{*} \leq s_{0}^{*}$, otherwise allocate to q_{1}. Moreover, s^{*}
is a weighted sum of the $6 x_{i}$'s, giving more weight as we move from the upper to the middle and the lower parts of the lungs, as shown by (9) and (10).
In view of the preceding remarks, we considered and evaluated the following classifier, based either on the sum $S^{*}=\xi_{1}+\xi_{2}$ or one of the ξ_{1}, ξ_{2}, namely, allocate to q_{1} if either $\xi_{1}+\xi_{2}>4$ or $\xi_{1}>2$ or $\xi_{2}>2$; otherwise, to q_{0}.

This weighted-sum classifier gave the

Table E. Weighted sum

	q_{0}	q_{1}	total
d_{0}	122	14	136
d_{1}	4	18	22
total	126	32	158

classification of Table E.
The misclassification error shows a slight improvement compared to the simple-sum s error.

Its $\mathrm{ATME}=\frac{4+14}{158}=0,11$

Remark.

It is observed that all 5 classifiers considered above have comparable discriminatory powers, as measured by the apparent total misclassification error ATME, ranging from 9% for the logistic to 12% for the simple ad hoc sum classifier s of (7).
In conclusion, the present application of the logistic model to a multivariate Bernoulli situation provides another example of its usefulness and good performance, especially in treating discrete data. It also works for case of more than two categories as well as for multinomial situations (see McCullagh and Nelder, 1989).

ПЕРІАНЧН

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \eta$ Bernoulli. Мє $\beta \alpha \dot{\sigma} \eta \tau \alpha \delta_{1} \delta \alpha \kappa \tau \iota \kappa \alpha ́$ (training) $\delta \varepsilon i ́ \gamma \mu \alpha \tau \alpha 126 \alpha \tau o ́ \mu \omega v \tau \eta \varsigma \kappa \alpha \tau \eta \gamma о \rho i ́ \alpha \varsigma$

 То $\varepsilon \mu \pi \varepsilon เ \rho ı к о ́ ~ \sigma \varphi \alpha ́ \lambda \mu \alpha ~ \tau \alpha \xi ̆ เ v o ́ \mu \eta \sigma \eta \varsigma ~ к \nu \mu \alpha i ́ v \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ 9 \% ~ \varepsilon ́ \omega \varsigma ~ 12 \%, ~ \mu \varepsilon ~ \varepsilon \lambda \alpha ́ \chi ı \sigma \tau о ~ \tau \eta \varsigma ~ l o g i s t i c . ~$

REFERENCES

Andesron, J.A. (1972) Separate sample logistic discrimination, Biometrika, 59, 19-35
Anderson, J.A. (1973) Logistic discrimination with medical applications, in Discriminant Analysis and Applications (T. Cacoullos, ed.), Academic Press, New York, 1973.
Hosmer, D. and Lemershow, S. Applications of Logistic Regression, Wiley, New York, 2000.
McCullagh, P. and Nelder, J.A. Generalized Linear Models, Chapman \& Hall, London, 1989.
Teugels, J.L. (1990). Some representations of the multivariate Bernoulli and binomial distributions. Journal of Multivariate Analysis, 32, 256-268.

[^0]: * p (in particular p_{0}) denotes normals, q the next to normal, etc (in increasing order of gravity)

