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SUMMARY 
Two training samples radiographs of 158 pneumoconiosis subjects, allocated in one of two 
categories, led to the classification problem for two populations under a six-dimensional 
Bernoulli distribution. Five classifiers: logistic regression, Bayes, k-means, simple and 
weighted sums, are considered; their apparent misclassification errors are evaluated; they 
range from 9% to 12%; the logistic has the smallest error, 9%.  

 
1. INTRODUCTION 
The discrimination problem below for a multivariate Bernoulli distribution arose in 
relation to the classificatin of chest radio-graphs of a number of subjects 
(pneumoconiosis patients – miners in New Mexico) into one of three q-categories 

210 ,, qqq  (according to the ILO, International Labour Office, categorization into 
main categories utsrqp ,,,,, )*. More specifically, out of 158=n  subjects, 126 were 
classified as 0q , 26 as 1q  and only 6 as 2q ; the rater (radiologist) based his q-
classification on his observing the presence (1) or absence (0) of a mark (e.g., 
opacity) in each of the six regions 61 ...,, RR , into which the two lungs were divided 
for observational purposes; 321 ,, RRR  for the right lung and 654 ,, RRR  for the left 
lung (see Figure 1); 1R  and 4R  are the two upper regions, 2R  and 5R   are the 
middle ones, and 3R  and 6R  the lower ones. 

                                                 
* p (in particular 0p ) denotes normals, q the next to normal, etc (in increasing order of 
gravity) 
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Thus for describing the regional (spatial) lung variation, we define Bernoulli random 

variables (rv) 1=iX  or 0 according to the appearance (1) or not (0) of a mark in 

each region iR ; hence each radiograph gives rise to a six-dimensional Bernoulli rv  

 

)...,,( 61 XX=X . For example, 

)0,0,1,0,0,1(=x  means marks only in the 

upper parts of the lungs (the middle and lower 

parts are “clear”). 

 

 

 

2. SOLVING THE DISCRIMINATION PROBLEM 
The preceding introduction leads to the following statistical discrimination problem: 

Given a training sample of n subjects classifed (by a doctor) into one of the q-

subcategories 210 ,, qqq , what is a reasonable (statistical) rule for allocating 

(classifying) a new subject (radiograph) )...,,( 61 xx=x  to one of the categories 

(populations) 210 ,, qqq ? In the present pneumoconiosis example, the sample sizes 

1260 =n , 261 =n  and 62 =n , from 10 ,qq  and 2q , are actually random variables 

obtained from the mixutre of 158626126210 =++=++= nnnn  chest 

radiographs, a sample from a large population of q-type patterms of pneumoconiosis. 

However, here we will apply the logistic and other discrimination procedures as if 

separate training samples were given from the q-categories, in view of the smalleness 

of the sample sizes and the estimation problems for mixtures (for a discussion of 

these matters see Anderson, 1972, 1973). Furthermore, only 6=n  patterns (in fact 

very little differing from 1q -patterns) were allocated to 2q , making it impossible to 

estimate the parameters involved in the discrimination problem; hence, we pooled the 

2n  2q -patterns with the 261 =n  1q  patterns, thus arriving at a 2-category 

 Right Left 

Upper )(1 URR  )(4 ULR  

Middle )(2 MRR )(5 MLR

Lower )(3 LRR  )(6 LLR  
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discrimination problem with 1260 =n  0q -patterns and 32626211 =+=+=′ nnn  

1q -patterns. 

The preceding reduction to a two-category discrimination problem, in addition to the 

smallness of 62 =n , takes also into account the fact that the general optimum Bayes 

discriminatory rule, with respect to prior probabilities 0P  for 0q  and 1P  for 1q  

)1( 10 =+ PP , allocates a sample point x  to 0q  if 

        )()( 1100 xx pPpP ≥    or   ]|[]|[ 10 xx qPqP ≥                      (1) 

(and to 1q , otherwise), where )(xjp  is the probability function of x under )(xjq  

)1,0( =j  which in the present 6-dimensional Bernoulli case involves 6426 =  

unknown probabilities, the probabilities 

]6...,,1,[)( === ixXPp iix ,  with  0=ix    or   1,   6...,,1=i ; 

)|( xqP j  denotes the posterior probability of jq  given x . Obviously much larger 

(training) samples 0n  and 1n′  are necessary for estimating 63 parameters (since 

∑ =
x

x 1)(p ), though in the present case one 0q  pattern, the )0,0,0,0,0,0(  has 

frequency 76% (should perhaps be classified into the p-category, i.e., normals) under 

0q  and another 10 or so with a frequency of about 1% (see Table 3.1 below). In fact, 

of the 64 possible patterns )...,,( 61 xx=x , only 11 different ones appeared. 

Nonetheless, the estimation problem of the )(xjp  does not become any easier, since 

the (maximum likelihood) estimates of )(xp  for the missing patterns (with zero 

frequencies) are zero (of course, not true). Another consequence of this is that it is not 
possible to classify a future x  which has not appeared in the training sample, at least 

by Bayes rules, which involve the (unknown) )(xjp . 

The preceding considerations point out the difficulties in the treatment of the 
present discrete multivariate discrimination problem, especially for Bayes 
discrimination rules in view of (1), where the )(xjp  have to be estimated from the 
available small training samples. 
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In the sequel, in addition to the logistic regression (discrimination) approach and 
the (plucg-in) Bayes and k-means rules, we use simple ad hoc classifiers, such as the 
simple sum 61 xxs ++=  or a weighted sum *s  (see (11) below) of the ix , in 
view of the fact that pneumoconiosis was shown to start in the upper lungs 

1,1( 41 == xx , say) and progresses (more 1’s) downwards ( 2q -patterns have, on 
average, more 1=ix ; see Table 1 and 5 below). 

 

3. SEVERAL CLASSIFIERS AND THEIR PERFORMANCE 
In this section, we give the classifiers, as motivated in the preceding section, along 

with their coresponding Apparent (as estimated from the training samples) Total 
Misclassification (probabilities) Error (ATME); this is simply the percentage of 
wrongly classified patterns of the training samples. 
The training samples are summarized in the following 

 

Table: The 0q  and 1q  patterns 

0q  patterns (126) 1q  patterns (32) 

Pattern Frequency Percent Pattern Frequency Percent 

000-000 96/126 76% 000-100 1/32 3% 

000-100 1/126 1% 100-100 13/32 41% 

001-101 1/126 1% 100-110 1/32 3% 

100-000 6/126 5% 110-100 1/32 3% 

100-100 18/126 14% 110-110 10/32 31% 

101-001 1/126 1%    

110-100 1/126 1% 111-110 1/32 3% 

110-110 1/126 1% 111-111 5/32 16% 

111-111 1/126 1%    

Note the big overlap of 0q  and 1q  at the pattern 100-100, which tends to increase 
the misclassification errors. 

A. Logistic Discrimination. In the logistic form for the posterior probabilities for 

2=s  categories in the well-known Cox-Day-Kerridge approach the fitted 0=y  or 

1, in the form 
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ππ
e

yE =≡
+

= ′ )(
1

1)( xxα  ss xαxαα
π
πy +++=′=
−

= 1101
loglogit xα       (2) 

In the present application, with )...,,( 61 xx=x , 0=ix  or 1, 6=s . 

Using the 0q  and 1q  training samples from 0q  and 1q , a logistic regression 
program (see, e.g., Hosmer and Lemershow, 2000) gave us the logit in (2) with 6=s  
equal to 

654321 079.1966,0187.0593.4925.1187.0547.5 xxxxxx −−+−−+ . 

If 0d  denotes allocation of an x to 0q  and 1d  to 1q , then we get the logistic 

regression (logit) classifier of Table A. That is, out 

of the 126 0q  patterns the classifier allocated 114 

to 0q  (correctly) and 12 to 1q  (incorrectly); 

whereas out of the 32 1q  patterns 2 were 

(incorrectly) allocated to 0q  and 30 (correctly) to 

1q . Hence the corresponding apparent totat error 

    09.0
158

212ATME =
+

= .                                        (3) 

B. The Bayes Classifier. The Bayes classifier (cf. 

(1)) gave the following Table B. 

The Bayes classifier does better than the logit in 

classifying the 0q  patterns (125 of the 126) 

whereas the logit is better in classifying the 1q  

patterns (30 of the 32). The 

10,0
158

151ATME classifier Bayes =
+

= ,                           (4) 

slightly higher than the logit, with 0.09ATME =  of (3). 

Table A Logit Classifier 

15832116total
32302

12612114
total

1

0

10

q
q

dd

 

 

Table B. Bayes classifier 

15818140total
321715

1261125
total

1

0

10

q
q

dd

 



 - 424 -

C. The k-means classification ( 2=k ). This classifier allocated an )...,,( 61 xx=x  

to the q category whose mean is closer (in Euclidean distance) to x. The q-mean 

vectors 10 , xx  are: 

For 0q ,  )214.0,143.0,571.0,214.0,286.0,643.0(0 =x  and                               (5) 

                   for 1q ,    )235.0,529.0,941.0,235.0,529.0,824.0(1 =x . 

The 2-means allocation is shown in Table C. Its  

10.0
158

214ATME =
+

= ,                             (6)  

 

equal to the Bayes ATME in (4). 

 

D. A simple sum classifier. It is easily observed (see Table 1) that marks )1'( sxi  

start appearing at the upper lung regions so that pneumoconiosis starts at the upper 

lungs and progresses downwards. Thus a reasonable and very simple, ad hoc, 

classifier of an )...,,( 61 xx=x  can be based on the number of marks 

     621)( xxxss +++== x ,   6...,,1,0=s .                        (7) 

We evaluated the classifier: 

Allocate x  to 0q  if 10 ≤≤ s ; to 1q  if 62 ≤≤ s . 

The corresponding allocation, Table D, gave a total 

error 

12.0
158

316ATME =
+

=  

 

Table C. Two means 

classifier 

15832126total
20182
1214124

total

1

0

10

d
d

qq

 

Table D. Sum classifier 

15832126total
452916

1133110
total

1

0

10

d
d

qq
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E. A weighted-Sum classifier. A more sophisticated classifier can be based on 

assigning bigger weights to sxi '  corresponding to the middle and lower lung regions. 

This is accomplished by introducing some new random variables based on the 6 

sxi ' . This was motivated by the representation, Teugels (1990), of an s-variate 

Bernoulli rv )...,,( 1 sxx=x  with probabilities 

]...,,[)( 11 ss xXxXPp ===x ,   1,0=ix    )...,,1( si =  

in terms of a one-dimensional rv )(xξξ = , taking s2  values and defined by 

 ∑
=

−+==
s

i
i

i xxξξ
1

121)( ,   sξ 2...,,2,1= .                          (8) 

Indeed, there is a one-to-one correspondence between the )(xp  probabilities and the 

s2  probabilities 

)]()([ xΧ ξξP = . 

Here 6=s  and we define a ξ transform for the right-lung triplet ),,( 321 xxx  

)3( =s  namely, 

   ∑
=

− +++=+=≡
3

1
321

1
32111 42121),,(

i
i

i xxxxxxxξξ ,   8....,,11 =ξ ,  (9)  

and similarly for the left-lung triplet ),,( 654 xxx  

       65465422 421),,( xxxxxxξξ +++=≡ ,   8....,,12 =ξ ,              (10) 

so that the resulting sum 21 ξξ +  takes the 15 values 16...,,2 . Moreover, the sum, 

say *s , of 1ξ  and 2ξ , 

  21
* ξξs += ,                                                  (11) 

is expected to give a highter discriminatory power than the simple sum s of 6, 
providing more choices for the separating value, *

0s , say, of *s  for the two 

categories, that is, allocate to 0q  if *
0

* ss ≤ , otherwise allocate to 1q . Moreover, *s  
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is a weighted sum of the 6 ix ’s, giving more weight as we move from the upper to 
the middle and the lower parts of the lungs, as shown by (9) and (10). 
In view of the preceding remarks, we considered and evaluated the following 
classifier, based either on the sum 21

* ξξS +=  or one of the 21,ξξ , namely, allocate 
to 1q  if either 421 >+ ξξ  or 21 >ξ  or 22 >ξ ; otherwise, to 0q . 

This weighted-sum classifier gave the 

classification of Table E. 

The misclassification error shows a slight 

improvement compared to the simple-sum s error. 

Its  11,0
158

144ΑΤΜΕ =
+

=  

Remark. 
It is observed that all 5 classifiers considered above have comparable discriminatory 
powers, as measured by the apparent total misclassification error ATME, ranging 
from 9% for the logistic to 12% for the simple ad hoc sum classifier s of (7). 
In conclusion, the present application of the logistic model to a multivariate Bernoulli 
situation provides another example of its usefulness and good performance, especially 
in treating discrete data. It also works for case of more than two categories as well as 
for multinomial situations (see McCullagh and Nelder, 1989). 

ΠΕΡΙΛΗΨΗ 
Μία ακτινογραφία των πνευμόνων πάσχοντος από πνευμονοκονίαση δίνει μίαν εξαδιάστατη 
μεταβλητή Bernoulli. Με βάση τα διδακτικά (training) δείγματα 126 ατόμων της κατηγορίας 
(βαθμού πνευμονοκονίασης) 0q  και 32 της 1q , προτείνονται πέντε ταξινομικοί κανόνες: ο 
«λογιστικός» (logistic), Bayes, k-means, απλού αθροίσματος και σταθμισμένου αθροίσματος. 
Το εμπειρικό σφάλμα ταξινόμησης κυμαίνεται από 9% έως 12%, με ελάχιστο της logistic. 
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Table E. Weighted sum 

15832126total
22184

13614122
total

1

0

10

d
d

qq

 


