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ABSTRACT 
In the early stages of some retinal diseases, such as glaucoma, loss of retinal activity may be difficult to detect with 

today’s clinical instruments.  Many of today’s instruments focus on detecting changes in anatomical structures, such as 

the nerve fiber layer.  Our device, which is based on a modified fundus camera, seeks to detect changes in optical 

signals that reflect functional changes in the retina.  The functional imager uses a patterned stimulus at wavelength of 

535nm.  An intrinsic functional signal is collected at a near infrared wavelength.    

Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected 

intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other 

physiological signals and by imaging system noise.  In this paper, we analyze the video sequences from a set of 60 

experiments with different patterned stimuli from cats.  Using a set of statistical techniques known as Independent 

Component Analysis (ICA), we estimate the signals present in the videos. Through controlled simulation experiments, 

we quantify the limits of signal strength in order to detect the physiological signal of interest. 

The results of the analysis show that, in principle, signal levels of 0.1% (-30dB) can be detected.  The study found that 

in 86% of the animal experiments the patterned stimuli effects on the retina can be detected and extracted. The analysis 

of the different responses extracted from the videos can give an insight of the functional processes present during the 

stimulation of the retina. 

 

1. INTRODUCTION 
In the field of ophthalmology, visual field testing (perimetry) is the gold standard for detection and monitoring 

progression of diseases such as glaucoma.  Perimetry is a functional test of the patient’s vision, which is intended to 

detect defects on the visual field map.  Unfortunately, perimetry remains a subjective test that requires the patient to 

make important judgments during the test that can be clouded by anxiety, fatigue, or lack of concentration.  

Additionally, the sensitivity of this test is poor.  Investigators have found that over fifty percent loss of ganglion cells is 

necessary to detect loss of function with perimetry [26].  This results in low sensitivity and poor repeatability is 

frequently observed in areas where anatomical damage is suspected.   

As early as 1949, Hill and Keynes linked the activity of the nerve cells with changes in their optical properties [2].  In 

1986, Grinvald et al. showed that changes in the optical properties of the tissue could be used to study the functional 

architecture of the cortex [3]. Villringer and Chance used near-infrared light to assess brain activity in humans through 

the skull non-invasively [4]. The authors have reported on an optical imaging device of retina function (OID-RF) that 

has been developed in an attempt to improve the objectiveness of the test and the sensitivity for detection of damage and 

change over time [1,19,20,24]. Kardon et al. reported the first device to directly image the retina to record changes in 

700 nm light caused by retinal activation in response to a 535 nm stimulus [4].   

The OID-RF measures the increase or decrease in retinal reflectance due to changes in retinal metabolism thought to be 

a result of blood oxygen uptake and capillary response due to neural activity resulting from visual stimulation of the 

photoreceptors in the human retina. The functional measurements are stored as optical recordings (videos).  The 

reflectance measurements recorded in these videos are a mixture of the signal that reflects the neuronal activity 

(functional signal) and signals related to background unknown sources and noise. Measured changes in reflectance in 

response to the visual stimulus are on the order of 0.1% to 1.0% of the total reflected intensity level which makes the 

functional signal difficult to detect by standard methods since it is masked by the other signals that are present. Our goal 



is to extract the functional signal from others signals present during the process of stimulation of the retina.  Various 

approaches have been used to improve the signal-to-noise (SNR) characteristics of the functional signal, such as 

integrating several sets of measurements to improve the SNR.  For humans, it is difficult to collect a large number of 

data sets requiring an hour or more of imaging.  So, it is important to know what the limits of the SNR are that will still 

allow one to detect the functional signal.  To find those limits, a numerical experiment using Independent Component 

Analysis (ICA) [5-9] has been devised that integrates experimental data from a cat’s retina.  

In recent years, ICA has been applied to many biological related problems such as electroencephalography (EEG) data 

analysis [10, 11] and electrocardiogram (ECG) data analysis [12]. Stetter et al. applied ICA techniques to isolate 

changes on the brain cortex of a macaque monkey due to visual stimulation [13, 14, 15]. The authors have applied ICA 

techniques [16-20] to isolate the changes produced in the retina due to visual stimulation.  In this paper we demonstrate 

the application of ICA to a set of data collected with the OID-RF in order to extract the functional signal due to retinal 

stimulation. To achieve our goal a set of synthetic simulations were performed to asses the efficiency of some of the 

most popular ICA algorithms in our particular problem. The algorithms that prove more suited to the problem are then 

tested on data collected in cat experiments. 

The paper is organized as follows: Section 2 contains a description of the optical imaging device and how the data was 

collected. Section 3 shows the methods used in the analysis of the synthetically-generated data and the live cat data. 

Section 4 describes the synthetic simulation methods used to validate the use of ICA in the data. Section 5 shows the 

results obtained by applying the ICA techniques in both synthetic and live cat data. Discussion of the results and 

conclusions are given in the last two sections. 

 

2. MATERIALS AND DATA COLLECTION 
A new device for imaging the retina, the Optical Imaging Device 

for Retinal Function (OID-RF) was developed by Kardon, et al. 

[1]. The OID-RF is a non-invasive imaging device that measures 

changes in the levels of oxygenated blood due to patterned stimuli 

applied to the subject’s retina. The hypothesis is that a visual 

stimulus may cause the retina to alter its level of blood volume and 

the ratio of oxygenated hemoglobin (HbO) to deoxygenated 

hemoglobin (Hb).  This has the effect of altering the spectral 

reflectance characteristics of the retina and in turn results in a 

change in the reflected intensity of the image in the stimulated 

area. 

Figure 1 shows a diagram of how the OID-RF works. A constant 

interrogation light with wavelength in the red-near infrared 

wavelengths (780-850 nm) is projected over the subject eye. 

Simultaneously, a stimulus pattern at a green wavelength (550nm) is presented. The stimulus is projected onto the 

subject’s eye. The reflected energy from the eye is then filtered by the beam splitter, which only allows the interrogation 

light to pass to the CCD camera. Kardon et al. presented a detailed description of the system in [1]. 

The experimental data was collected from a live cat.  A single experiment (epoch) consists of 20 frames of 144 by 192 

pixels each, at a frame rate of 2 Hz for a total recording time of 10 sec. The stimulus paradigm consists of a checkered 

pattern with alternating polarity that is off for the first 3 s, representing the baseline (pre-stimulus), on for 5 s of 

stimulation, and 2 s of recovery (post-stimulus).  The stimulus can be applied to a vertical or horizontal region in the 

shape of a bar.  Figure 2a is an image of the pre-stimulated (baseline) retina as represented in the interrogation band 

(near infrared).  Figure 2b shows a vertical bar stimulus with the corresponding measured reflectance of the infrared 

signal during the maximum functional response signal (about the 5
th

 second or 10
th

 frame).  Figure 2c presents the time 

plot of the functional response for the stimulated region.  The region selected is approximately at the second white 

checkered box from the top.  To the right of the same box another region is sampled that shows a negative response just 

outside the stimulated region.   

The measured signals in Figure 2a and 2c form the basis of the numerical experiment and simulation.  The baseline 

signal in Figure 2a allows one to estimate the spatial background signal from the pre-stimulated retina.  This signal 

 
Figure 1.  Optical layout of the OID-RF. 



contains physiological and device noise. The functional response signal in Figure 2c gives one a model of the reaction 

of the retinal to the stimulus.  A positive or negative gain is applied to this functional response-based model to simulate 

an experiment with a human subject where the signal has been found to be substantially less than that of the cat.  The 

numerical experiments  are used to establish the detection limits using various signal processing techniques and also 

help define the experimental protocol for the human experiments, for example how many epochs or integration time are 

necessary to overcome the background noise. 

 

 

3. METHODS 
This section describes the techniques used in the extraction of the signals resulting from the stimulation of the retina. As 

mentioned before, changes in reflectance due to visual stimulation of the retina are very small. It is our intention to 

apply ICA techniques to our data and to find out which of the algorithms is best suited for our experiments.  

Let ( ) ( ) ( )[ ]
1 2 n

X x t x t x t= …  be a set of observed random variables and assume that they come from the linear mixture of 

the components ( ) ( ) ( )1 2 nS s t s t s t=   …  by a mixing matrix A, as in 

X A S=  (1) 

Then independent component analysis consists of estimating both A  and S  using only the observations X  and the 

assumption that the source signals are statistically independent [21]. The statistical independence of the sources means 

that their joint probability can be factorized as 

( )
1

( )
N

i

i

p S p s
=

= ∏    (2) 

where ( )i
p s  is the individual probability density function (pdf) of each of the sources and N  is the number of sources. 

For this study we selected 5 different ICA algorithms: Infomax; which uses maximum likelihood estimation (MLE) to 

extract the sources that give the highest probability for the observations; JADE a popular ICA algorithm that consists on 

using higher-order cumulant tensors; Fast-ICA that estimates the independent components by maximizing non-

gaussianity; SOBI a method that incorporates time structure in the estimation of the sources; and ESD which is based on 

the same principles as SOBI but is optimized for image analysis. A brief description of how these algorithms work 

follows. 
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Figure 2. (a)  This is an image of the pre-stimulated retina in the interrogation spectral band.  (b) Stimulus pattern 

and response of a live experiment using a cat.  (c) Signals for a region within the dark stimulated area (between 

pixels 21-40 in the x-axis) and within the bright stimulated area (between pixels 41-60 in the x-axis). 



3.1. Infomax 

The Infomax ICA algorithm was first proposed by Bell and Sejnowski [5] and is a generalization of the Infomax 

principle applied to ICA. The objective of the Infomax ICA algorithm is to reduce the redundancy between the sources. 

It is well known from information theory that when a set of signals are statistically independent, their mutual 

information is zero. As detailed in [22], the mutual information of the sources ( )I S  is related to the joint entropy 

( )( )H g S  of the sources passed through a set of nonlinear functions 
i

g , as in 

( ) ( )( )
( )

( )

'
log

i i

i i i

g s
I S H g S E

p s

 
= − +  

  
∑  (3) 

Where ( )i i
p s  are the probability density functions (pdf) of the sources. 

If the absolute values of the slopes of the sigmoid functions ( )'i ig s  are the same as the independent components pdfs, 

( )i i
p s , the Infomax (maximization of the joint entropy of the ( )g S  vector) is the same as ICA (minimization of the 

mutual information).  

Bell and Sejnowski derived a stochastic rule that maximizes the entropy of ( )g S  using: 

( ) ( )1
T

T
W W f s xα −∆ +   (4) 

Where W is the estimated inverse of the mixing matrix and vector function f  has elements: 

( ) ( )'
ln .i i i i

i

f s g s
s

∂
=

∂
  (5) 

When ( ) ( )'

i i i i
g s p s= , the ICA algorithm is exact. Of course this leaves the problem that we need to know the pdf of 

the sources, which in most of the cases is unknown, but a rough approximation of the pdf is sufficient. For a more 

through discussion of how this affects the Infomax algorithm refer to [5, 22].  

3.2. JADE 

The Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm was proposed by Cardoso and Souloumiac 

in [23] and is based on the joint orthogonalization of the cumulant tensors. The cumulant tensor is defined as a four-

dimensional array whose entries are given by the fourth order cross-cumulants of the data as in: 

( ){ }, , , |1 , , , .
x i j k l

Q cum x x x x i j k l n= ≤ ≤  (6) 

The cumulant matrix Fij(M) associated with any n n×  matrix M (later assumed to be an eigenmatrix) is defined as: 

( ) ( , , , ),
ij kl i j k l

kl

F M m cum x x x x=∑   (7) 

where mkl are the elements of the matrix M. We work with the case that the data follows the ICA model with whitened 

data 

,
T

x VAs W s= =   (8) 

where the whitened matrix is denoted by W
T
. Eigenvalue decomposition (EVD) can be viewed as a diagonalization, 

when the JADE algorithm takes a set of matrices Mi, i=1,…,m, and estimates the matrices C=WF(Mi)W as diagonal as 

possible. The contrast function to measure the diagonality of the matrix C is: 

( ) ( )( )
2

T

JADE i

i

W diag WF M Wφ =∑  (9) 



After some manipulations [23], the contrast function can be expressed as: 

( ) ( )
2

, , , 1,..,

, , ,JADE i j k l

i j k l n

W cum y y y yφ
=

= ∑  (10) 

where yi=Wxi. Maximization of 
JADE

φ  is one method of joint diagonalization of F(Mi). 

3.3. Fast-ICA 

The Fast-ICA algorithm was developed by Hyvarinen and Oja in [9] and is based on the minimization of gaussianity 

based on the negentropy concept. To define negentropy, we use the concept of differential entropy, defined as: 

( ) ( ) ( )log ,x x xS p p u p u du= −∫   (11) 

where S is the differential entropy of the random vector X with probability density function px. Then, the negentropy is 

defined as: 

( ) ( ) ( ) ,
x x x

J p S S pφ= −   (12) 

where 
x

φ  is the gaussian density with the same mean and variance as px. The Fast-ICA algorithm then uses a fixed point 

algorithm to maximize negentropy. 

The algorithm then computes the demixing matrix W in an iterative fashion, computing one row at a time using  

( ) ( )( ) ( )
3

1 ( ) 3 ,
T

i i iw j E y w j y w j+ = −  (13) 

where wi(j+1) is the i-th row for the (j+1)-th iteration and y is the whitened version of the data. 

3.4. SOBI 

Our data set contains a temporal structure given by the stimulus and the sinusoids. When the independent components 

are time signals, they may contain much more structure than simple random variables. Some algorithms, like SOBI and 

ESD try to take advantage of the temporal structure of the data. 

A form of the time structure is given by the time-lagged covariance matrix, 

( ) ( ){ }Tx
C E x t x tτ τ= −   (14) 

When 0τ =  we have the zero-lagged covariance matrix, which only contains second-order information and it is not 

sufficient for estimating the independent components.  Since the sources are assumed to be statistically independent, we 

know that the lagged covariances are also zero. Thus, we need to estimate a matrix B  such that the covariance of 

( ) ( )y t B x t=  satisfy [21]: 

( ) ( ){ } 0 , , ,
T

i j
E y t y t i j i jτ τ− = ∀ ≠   (15) 

Based on this principle, the AMUSE algorithm [7] was developed. This algorithm is simple and fast to compute but it 

only works if all the eigenvalues of the time-lagged correlation matrix are different. An extension of the AMUSE 

algorithm considers different time lags τ  instead of just one. The idea is to simultaneously diagonalize all the lagged 

covariance matrices. A way of measuring the diagonality of a matrix M  is to use the operator 

( ) 2

ij

i j

off M m
≠

=∑   (16) 



which gives the sum of the squares of the off-diagonal elements of M . What we want is to minimize the sum of the off-

diagonal elements of several lagged covariances. For this we use the whitening matrix W  and the symmetric version 
y

Cτ  of the lagged covariance matrix. Denoting by S  the set of lags τ , we can write the objective function: 

( ) ( )y T

S

J W off W C Wτ
τ∈

=∑ . (17) 

Minimizing J  under the constraint that W  is orthogonal gives us the estimation method. The second-order blind 

identification (SOBI) algorithm [8] is based on this principle. 

3.5. Extended Spatial Decorrelation 

The extended spatial decorrelation (ESD) algorithm was proposed by Schiessl et. al. [14] and is an extension of the 

AMUSE algorithm (described in the previous section) for two dimensional spatial structures. It has been applied to 

brain imaging experiments [15] similar to the experiments set up in this paper. 

 

4. SYNTHETIC SIMULATIONS 
Since the amplitude of the reflected signal due to the functional response has been measured to be on the order of 0.1 to 

1% of the total reflected infrared interrogation light, we design a series of experiments to quantify the performance of 

ICA algorithms in recovering the functional signal.  The simulated videos are generated from a live cat experiment 

where no stimulus was applied, referred to as the baseline video.  The data from the live cat experiments were provided 

by T’so [25].  This baseline video is altered by adding a synthetically generated functional response that is based on the 

model of an actual response shown in Figure 2c.  A single video frame during the peak of the functional response in a 

live cat experiment is shown in Figure 3a. The resulting frames have similar spatial characteristics.  Using the baseline 

video, the model of the functional response is applied.  The result is presented in Figure 3b.   This process allows one to 

produce videos by varying the amplitude in the functional signal and theoretically test the limits of each of the ICA 

algorithms.  Presenting a realistic, but precisely known functional signal, also allows one to verify the performance by 

correlating the signal estimated by the algorithm with the known signal. 

 

The amplitude of stimulus applied to the baseline video is defined by its Stimulus-to-Background Ratio (SBR).  The 

SBR is given as, 

( )
2

10 2
10log S

B

SBR dB
σ

σ
=   (18) 

Where 2

S
σ  is the variance of the functional signal and 2

B
σ  is the variance of the background. 
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Figure 3: (a) Live cat frame from a stimulated cat retina. The vertical bar on the left is where the optical stimulation 

was applied. (b) Frame from the synthetically generated stimulated video. 



Five videos were produced starting with the modeled functional signal and background from 0 dB to -40 db at -10 dB 

intervals.  Note that the more negative the SBR value, the lower the amplitude of the functional signal.  A 0 dB SBR 

indicates that the variance of the functional signal is equal to the variance of the video.  A -30 dB SBR means that the 

variance of the functional signal is 0.1% of the variance of the video.  Each video is processed by the five ICA 

algorithms, which estimated the sources and the mixing matrix; with the estimated sources yielding the spatial 

distribution of the functional response and the estimated mixing matrix giving us the time response of the corresponding 

estimated sources. The resulting extracted signals were then correlated with the model signal that was used to produce 

the video, i.e. ground truth.  The correlation was used as the metric for comparison of the ICA algorithms. To 

understand the nature of the estimated signals, we re-write equation (1) with the actual dimensions of experimental data. 

The ICA model is now defined as: 

20 27648 20 3 3 27648
ˆ ˆX A S× × ×=   (19) 

Where the dimensions of the observations X  correspond to 20 frames (images) of 144 by 192 pixels each (27648 total 

pixels). We arbitrarily choose the number of estimated sources to be three, since we are interested in finding 2 temporal 

responses and need an extra one to represent any other process. Therefore, the estimated mixing matrix Â  will have 3 

column vectors of 20 points each, which will represent the time courses of the independent components. The estimated 

sources matrix Ŝ  is composed of three row vectors, each of which will generate a 144 by 192 pixels image. These 

images are the ones that will give us the spatial distribution of 

the functional response. 

Specifically, the results of the ICA algorithms were compared 

in the temporal and spatial domains.  For the spatial domain, 

we correlated the sources as estimated by the ICA algorithm 

with a “reference frame,” which is an image artificially 

generated by using a frame of pre-stimulated retina and the 

artificial stimulus on top, as seen in figure 4. For the temporal 

comparison, each row of the estimated mixing matrix, Â , was 

correlated with the modeled functional responses shown 

previously in Figure 2c. A high correlation means that the 

estimated mixing matrix is following the time trace of the 

functional response expected due to visual stimulation. 

 

 

5. RESULTS 

5.1  Synthetic Stimulus Simulation 

The ICA algorithms estimated the spatial/temporal signal with three components or sources.  This was an arbitrary 

choice.  Because one does not know a priori which component represents the functional signal, each component was 

correlated with the reference frame.  In other words, to determine if the algorithms estimate the sources correctly, we 

need to correlate each column vector of the mixing matrix with the temporal references and each row of the sources 

with the spatial reference and then pick the highest correlation values obtained. Figure 5 shows the maximum absolute 

correlation values at zero lag. From this plot we see that the Infomax algorithm obtains correlation values above 0.8. 

Meanwhile, Jade, SOBI and ESD have correlation values between 0.6 and 0.9. Fast-ICA has the lowest correlations, 

ranging between 0.4 and 0.6. In most of the cases, a decrease of 10 to 20% in the correlation values is seen for SBR 

values less that -10dB. 

 

 

 

 

 
Figure 4: Spatial reference frame. The vertical 

stripe on the left (before marker 50 in the 

horizontal axis) is where the stimulus is applied.   



 

The rows of the estimated mixing matrix were correlated to two 

reference signals. Figure 6 shows the results of the correlation 

with temporal reference 1, and here we see that Infomax reaches 

correlations above 0.9 for -10dB or more and above 0.85 for 

SBR values between -20 and -40dB. JADE and SOBI have 

similar results and show a sharp decrease in the correlation 

values for SBR values of -20dB or less. ESD correlation values 

remain mostly constant around 0.7, and Fast-ICA has 

inconsistent results ranging between 0.4 and 0.6. 

The correlation values resulting from the correlation of the rows 

of the estimated mixing matrix and the temporal reference 2 are 

shown in figure 7. In this case, JADE and SOBI are the 

algorithms that obtain the highest correlations, with values 

above 0.8. Infomax correlation values are above 0.75, while 

ESD values are around 0.7. Fast-ICA results again have the 

lowest correlations, with values below 0.6. 

 

5.2  Cat Experimental Results   

Using the results of the synthetic simulations we narrowed the number of ICA algorithms to use with the cat data 

recordings to three: JADE, Infomax and SOBI. A total of 60 cat data experiments were processed, of which 18 had a 

vertical stimulus (Fig. 8a), 18 a horizontal stimulus (Fig. 8b), 3 a spot stimulus (Fig. 8c), 3 a full field stimulus and 18 

were unstimulated (fig. 8d). We were able to visually identify 36 out of the 42 stimulated videos (86%). 

Figures 9, 10 and 11 show a comparison of how the three algorithms extract the stimulus signal spatially and temporally 

for three different types of stimulation. Figures 9a to 9c show how the ICA algorithms locate the functional response to 

the vertical stimulus. Figure 9d show the timelines of these estimated components, as given by the estimated mixing 

matrices. Note how all three algorithms show a decrease in the reflectance when the stimulus is applied and the negative 

response peaks after 2 to 2.5 seconds of stimulation (frames 10 or 11). After reaching this negative peak the reflectance 

starts to increase again, surpassing the normal levels of reflectance, to finally go back to its original level when the 

stimulus is turned back off.  

 
Figure 5: Spatial normalized correlations. Infomax has 

the highest correlations, all above 0.8. JADE, SOBI 

and ESD achieve correlation values around 0.7, while 

Fast-ICA has poor correlation values at all levels. 

 
Figure 6: Temporal normalized correlations for the 

cat data with synthetic stimulus, correlated against 

reference signal 1. Infomax clearly outperforms the 

rest of the ICA algorithms. 

 
Figure 7: Temporal normalized correlations for 

the real data with synthetic stimulus, correlated 

against reference 2. JADE and SOBI have the 

highest correlation, with Infomax having slightly 

worse values. 



 

The functional response for horizontal stimulation is similar to the one for vertical stimulation, as shown in figure 10. all 

the ICA algorithms estimate the spatial location of the functional response and as figure 10d shows, the timelines are 

similar but with a slight delay (1 frame) if compared to the response for the vertical stimulus. The response to the spot 

stimulus (figure 11) is similar to the ones in the two previous cases.  

 

6. DISCUSSION 
The synthetic stimulus simulations have provided a means to analyze the feasibility of extracting a low amplitude 

functional signal in noisy reflectance images.  The results of the spatial correlation of the estimated sources with the 

reference frame (Figure 5) showed that the Infomax algorithm achieves the highest correlation values.  Infomax always 

provided an accurate location of where the visual stimulus had been applied. JADE and SOBI also produce good 

 
Figure 10: (a)-(c) Estimated spatial horizontal 

functional signal extracted using JADE, SOBI and 

Infomax. (d) Estimated time courses for horizontal 

stimulation. 

 
Figure 11: (a-c) Estimated spatial spot functional signal 

extracted using JADE, SOBI and Infomax. (d) 

Estimated time courses for spot stimulation. 

 

Figure 8. Different functional responses to 

Stimulation. (a) Response to vertical stimulus. (b) 

Response to horizontal stimulus. (c) Response to spot 

stimulus. (d) response when no stimulus is applied. 

Figure 9: (a-c) Estimated spatial vertical functional 

signal extracted using JADE, SOBI and Infomax. (d) 

Estimated time courses for vertical stimulation. 



correlation results, but not as high as Infomax.  The results for these two algorithms allow us to locate the functional 

response.  ESD produces marginal results, especially at the 0 dB SBR level, which is unexpected given the fact that at 

this level the stimulus is quite high. Fast-ICA produces poor results for the spatial reconstruction of the functional 

response. 

The temporal correlations show how close the algorithms estimate the functional in the “dark” and “bright” regions 

where the functional response is located. The functional responses for these two regions are slightly different, with the 

dark region peaking negatively very fast and the bright region increasing its reflectance for about one second to then 

show a decrease in reflectance similar to the one in the dark region. The correlations results shown in Figure 6 show that 

Infomax is the algorithm that achieves the best results for the reference signal taken from the dark region. For SBR 

levels higher than -10 dB, JADE and SOBI achieve also high correlation values, but then those values sharply decrease 

when the SBR is lower than -20 dB. In contrast, when we compare the results of the reconstruction of the bright region 

of functional response, SOBI and JADE outperform Infomax, although not by much. We can hypothesize that SOBI 

performs better in this case because the reference signal has a more deterministic time structure, and since SOBI takes 

advantage of the time structure of the components it achieves those high correlation values.  It is unclear why JADE 

performs better in this case, but we have observed that JADE is very consistent on the correlation values obtained, 

consistently having high enough values for detection of the functional signals. In the temporal experiment we again 

noted marginal performance by ESD and poor performance by Fast-ICA, which might be due to poor convergence for 

these specific types of signals or because of the dimensionality of the problem. 

When analyzing the cat data recordings we noted several interesting results. First, it is clear how, as a result of the 

stimulation, two adjacent regions of contrasting reflectance are created. In the case of the vertical stimulation, the dark 

region is left to the bright region. When there is horizontal stimulation, the bright region is on top of the dark region, 

and most interesting, when there is a spot stimulation (small square) the left/bottom part of the square (lower triangle) 

forms the dark region and the right/upper part of the square (upper triangle) forms the bright region, as if the responses 

of the vertical and horizontal stimulation would have additive property. The nature of these phenomena is unknown to 

us, but several theories can be formulated . Another interesting result is the way the functional response changes the 

reflectance through time. At first when the stimulus is applied (frame 6) there is a slight increase in reflectance but then 

immediately it starts to decrease, to reach its negative peak between frames 10 to 12 (2 to 3 seconds after the start of 

stimulation). After this negative peak the signal goes back up to higher levels than the original ones to finally come back 

to the original state after the stimulus is turned off.  These results are consistent with other hemodynamical processes 

observed in the brain using techniques such as functional magnetic resonance imaging (fMRI) and functional near 

infrared imaging (fNIR), which suggests that the same quantitative analysis carried out in this work could be applied to 

those problems. 

Finally, when comparing the results obtained by the three different algorithms selected for the analysis of the cat 

recordings, we note that the three obtain similar estimated signals. If the reader notes a discrepancy in the bright/dark 

regions (as seen in figures 9b and 9c, for example) is because of the ambiguity problem inherent to ICA; in those cases 

the algorithms are estimating signals that are the negative of the real functional signals. This should not be a critical 

problem since we know how the spatial regions are supposed to be distributed. The resulting estimated images also 

show that SOBI generates slightly sharper edges on the stimulated region, especially in the vertical stimulation example. 

  

7. CONCLUSSIONS 
The experiments preformed by applying a synthetically generated functional response on top of an image of an 

unstimulated cat retina have provided us with information of the limits of detection achievable by the ICA algorithms. 

Our goal was to detect functional responses on the order of 0.1% (-30dB) of the total reflected signal. Our results show 

how three ICA algorithms; JADE, Infomax and SOBI produce estimates of the functional signals that are highly 

correlated with our references. This study will be more useful when analyzing data providing from human experiments, 

since in the human case the functional response is much more faint than in the cat; because of more noise sources such 

as movement (the cat is anesthesized during the experiments, the human is not), lack of focus (the human subject cannot 

withstand long periods of stimulation) and the complexity of the human retina. 



The analysis of the cat data recordings corroborate the findings of the synthetic simulations, and also shows some 

interesting results such as the generation of a dark/bright contrasting region where the retina is stimulated and a time 

response that follows the same pattern as very well know neurophysiological processes studied with fMRI. 

The 86% ratio of detection of the functional response could have been higher, but due to problems is alignment between 

the stimulus and the cat eye, in some cases the stimulus was applied outside of the field of view, producing no response. 

In conclusion, the OID-RF has been demonstrated to produce a functional response in the cat retina due to visual 

stimulation. The analysis of the synthetic experiments has given us useful information in determining the threshold of 

stimulation that can be detected using the ICA algorithms. The analysis of these experiments could also be applicable to 

any area where a spatiotemporal dependence of the data is presented. 

It is our intention to apply the results of this study in data from human experiments obtained by a new prototype of the 

OID-RF device. The human data results will be reported by Abramoff et al. [24], but the ICA algorithms have not been 

tried in those experiments yet. 
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