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Abstract-In this paper, we present a new reconstruction
method with volumetric registration and semi-automatic
segmentation in a multi-view 3D freehand ultrasound imaging
system. The new volumetric registration approach is performed
on binarized walls using non-linear least squares. It can provide
accurate multi-view reconstructions despite significant rigid
target motion between different acoustic window acquisitions.

A hybrid adaptive gradient vector flow (GVF) geometric
active contour (GAC) model is used for image sequence
segmentation. It allows for relatively simple initialization of the
deformable model, while avoiding edge leaking at poor edges and
small boundary gaps.

The algorithms were validated on four ultrasound phantom
data sets (eight sequences of a total of 336 images) and two
echocardiography data sets (four sequences for a total of 75
images). Quantitative evaluation shows that automatic
segmentation is comparable with manual segmentation. Using
breath-holding and cardiac gating, volume estimates from multi-
view reconstructions of the left-ventricle were found to be in
better agreement with clinical estimates than volumes estimated
from single view reconstructions.

Keywords - multiple acoustic windows, echocardigraphy,
registration, segmentation, three-dimensional reconstruction.

I. INTRODUCTION

Freehand 3D ultrasound imaging techniques can be used to
reconstruct 3D anatomy from a set of registered 2D image
slices. The 2D slices can be located at any arbitrary orientation
and position throughout 3D space, and can be acquired using
any standard, 2D ultrasound transducer in conjunction with a
spatial locator. Most prior research in echocardiography has
been focused on using a single acoustic window view for
reconstructing the left ventricle. However, for a single view,
there are fundamental limitations that degrade the
reconstruction, such as the presence of shadows due to bones
(ribs) and air (in the lungs) that lead to reconstructions that do
not have sufficient information to reflect the original anatomy.

Recently, there has been increased interest in the use of
multiple acoustic windows for providing 3D reconstructions of
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the left ventricle. Ye et al. [1] used a 3D rotational probe and
an electromagnetic spatial locator to combine data from an
apical long-axis view and a parastemal short-axis view. Their
method assumed that there was a good spatial alignment
between different view sweeps. Leotta et. al. [2] used a 2D
freehand scanning protocol to combine parastemal and apical
windows in vitro. The 2D images were manually registered by
manual tracing of the left ventricular boundaries. A similar
study and system was reported by Legget et al. [3].

None of these studies addressed the problem of how to
automatically register 3D reconstructions between different
acoustic windows. In the research presented in this paper, we
present a new multi-view reconstruction methodology with
volumetric registration between different acoustic windows and
semi-automatic sequence segmentation using gradient vector
flow (GVF) geometric active contour (GAC) model. We have
reported on earlier versions of our system in our previous
publications [4-6]. In this paper, we provide extensive
mathematical details on the new volumetric registration
method. In [6], for single images, we provided comparisons
between the new segmentation method and the other related
geometric deformable models. In this paper, we extend the
work to 2D+T image sequence segmentation and present
results from extensive validation.

Section 2 describes the registration and segmentation
methods in detail. Section 3 presents the validation results on
phantom and pediatric echocardiography data. Concluding
remarks and future work are given in Section 4.

II. METHODS

A. Imaging System
All imaging was performed using a 7MHz ID wide-view

array transducer probe 7V3C and A 2D ultrasound machine,
the Acuson Sequoia C256 (Siemens, USA). The spatial
locations of 2D image slices were recorded by a six-degree of
freedom DC electromagnetic position and orientation
measurement device, the Flock of Birds (FOB) (Ascension,
Burlington, VT, USA).
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B. 3D Reconstruction with volumetric registration
Automatic registration is a required and important step for

combining acquisitions between different acoustic windows.
We note that rigid movement of the target in inter-view sweeps
and inaccurate sensor measurements cause the majority of the
registration errors [7]. Intra-view deformation generated by
respiration and cardiac motion can be solved by breath-holding
and ECG gating.

We developed a new automatic volumetric registration
method in our multi-view reconstruction system. First, we
initialize the search for the optimal registration parameters
using a 3D Hotelling transform (also called Principal
Component Analysis or Karhunen-Loeve transform) to
construct an object-based reference volume, to coarsely register
3D volumes from different views. Then, we perform a higher
accuracy registration using a robust, non-linear least squares
method (Levenberg-Marquardt) to estimate the optimal
registration parameters. We have found that the new
registration strategy is very efficient and robust. It converges to
the same registration parameters from a wide variety of
initializations [5].

We note that echocardiography images of the same
anatomy but acquired from different acoustic windows can
appear substantially different. The majority of the pixels in 2D
echocardiography images exhibit non-constant features,
especially inside the endocardial cavity, where we have muscle
tissue, blood flow, severe speckle noise and many other
artifacts (such as shadowing). Thus, registration with the
original intensity images is not likely to succeed. Instead, we
used the manually or semi-automatically segmented object to
binarize the ECG-gated endocardial boundaries. The
underlying assumption is that the endocardial boundaries
should be common features among different acoustic window
images.

In the following we will define terminology that will be
used to describe the algorithm. Suppose we want to register
two sets of 2D image sequences acquired at two different
views, view V, and view V2. Let Np,Nq be the number of

pixels inside the wall boundaries in sets P, Q, respectively.

Let P points come from view V, and Q points come from

view V2 as given by

P = {pi}, i = 1,2,...,N

Q = {qj} j = 1,2,...,Nq

where p, qj are 3D vectors, the 3D voxel coordinates from the
two sweep views:

pi = [Xi,'Yi, Zi ]T ,

q j [Xj Xyj, Zj ]T.

To estimate the parameters of the registration, we
considered rigid-body motions, described by translation and
rotation as given by:

r [x,y,z,ax,,3,y]T
where x, y, z are translation distances and ax,8, Iy are
orientation angles.

For the registration method to converge, the complex
surface structures from different views must exhibit some
partial overlap. Once the feature of data sets are determined, we
first reconstruct the 3D view with the largest number of 2D
slice planes (denoted by V, ) over a regular Cartesian grid, and
then register the 2D slice planes from the rest ofthe views to it.

The data points from a second view (denoted by V2) were
translated and rotated using a registration transformation. Let
T (qj ) denote the registration transformation. We interpolate

the intensity values at T (qj ) using the image points of I (p)

in a 3D Cartesian grid volume. We use the symbol I(PT(q))
to represent the transformed view. The optimal registration
vector is estimated as the one that minimizes the mean square
error objective function:

N

In our multi-view reconstruction system, we first averaged
all registered single view 3D acquisitions and we then
interpolated using tessellation based linear interpolation.

C. Semi-automatic segmentation
In pediatric cardiology, there can be significantly

topological variability on the wall boundaries. Furthermore,
due to the wide variability in possible abnormal cases, it is
difficult to provide significant populations for each abnormal
classification. This difficulty in segmentation can be addressed
using GVF geometric active contours (GAC).

We developed a new hybrid semi-automatic segmentation
strategy on echocardiography sequences, which combines a
recently introduced GVF Fast GAC model [8] and a modified
level sets methods applied to echocardiography data by Corsi et
al. [9]. We call it the adaptive GVF GAC model. The
advantage of this approach is that it allows for relatively simple
initialization of the deformable model, while avoiding edge
leaking at poor edges and small boundary gaps.

Corsi et al. [9] applied level set techniques to semi-
automatically segment 3D echocardiographic data using:

q
t = g6K|VQ| +/Avg.VQ .

Here, g is usually defined as an enhanced edge indicator
applied to a Gaussian smoothed echocardiography image,
given by
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We noticed that Corsi et al. dropped the expansion term in
the speed function, which controls curve motion in the normal
direction. This term could have pushed the evolving curve past
boundary gaps. However, we have observed that this approach
worked well only when the initial curve was sufficiently close
to the actual boundary. To overcome this weakness, we
considered integrating GVF in a GAC model.

Here, we note that the GVF force has a large capture range
and allows deformable models to be initialized far away from
the object boundary [10]. Paragios used a fast GVF GAC
model that is robust with respect to the initial conditions, and
also allows active contours to undergo topological changes to
track multiple objects [8]. In his case, we have:

f9t = [K-/ |VX1- ((U(X, y), v(x, y))VO)
where the vector field (u(x,y),v(x,y)) is the GVF vector
field. It diffuses the image gradient information toward the
homogenous background. It is a bidirectional flow that
propagates the curve toward the object boundary from inside or
outside the boundary. This deformable model allows for
convergence over a wide range of initial curves. In the above
formulation, the edge indicator function g (instead of f ) is
used for controlling the strength of the advection term. In the
implementation of the method, the strength of the GVF term is
decreased when the evolving front approaches the object
boundary. But the maximal coefficient of the GVF term is the
maximal value of g, which has a value of one in homogeneous
regions.

Note that this approach still suffers from boundary leakage
artifacts. In our new approach, we recommend a hybrid method
that can achieve accurate segmentation without edge leakage,
starting from a simple curve initialization. The hybrid new
approach relies on the use of Paragios' method for propagating
the initial curve closer to the image boundary. When the
segmentation curve approaches the real boundary, propagation
proceeds with Corsi's method that provides for an accurate
result.

The new deformable model is then given by:

9t = gc |V' -(1-s) [f,i1 ((u, v).VQ)] + sfl2Vg.VQ

where s = s(f (x, y) , t) is a step function that is a function of
the edge map and time. When the step function s is zero, the
equation reduces to Paragios' method. When the step function
s approaches one, the equation reduces to Corsi's method.
Initially, under the new GVF GAC deformable model, the
advection term is a GVF field. It drives the evolving curve
move fast toward the object boundary even in a homogeneous
field. When the segmentation curve is sufficiently close to the
true boundary, the edge map assumes higher values. To detect
that the evolving curve is approaching the target boundary, at

each iteration, we evaluate the average value of the edge map
over the current zero level-set. When the average value is
above a certain threshold, we turn on the step function. The
advection term is then dominated by the vector field Vg,
which can be used to avoid edge leaking on the poor
endocardial boundaries and small boundary gaps. The
procedure is summarized as:

s (f (x, y) t)= (..')o(( ) he

1, otherwise

where f (x, y) is the image map function defined as:

f(x, ) (IV(QI (X, y) * I(X, Y))

To determine the threshold Ts, we estimate an

approximate average value of the edge map over the
segmentation boundary. This is estimated from the average
value of the edge map over a training set of manually
segmented images.

III. RESULTS

A. Data Sets
We used both in-vitro phantom data sets (3D Ultrasound

Calibration Phantom, Model 055, CIRS, USA) and in-vivo
pediatric heart data sets. Eight sequences of long-axis and
short-axis view phantom image video (total 336 images) and
four echocardiography sequences of parasternal short-axis and
apical long-axis views were used (two were standard 2D B-
scan video sequences and the other two also had spatial locator
data information).

B. 3D reconstruction with automatic registration
Breath-holding and ECG gating were used to minimize the

deformation from cardiac motion in echocardiography data
acquisitions. Each single acoustic window sweep lasted about
15 seconds (433 images), which is a much shorter scanning
time than the acquisition time reported by Ye et al. [1]. The
human subjects did not have to remain still in the time it took
to switch to a different acoustic window. In our system, the
new reconstruction method can automatically correct arbitrary
rigid movement between different acoustic window sweeps.

We have shown that by using the new automatic
registration method, the two view reconstruction from the
parastemal short-axis and apical long-axis view gave a much
better representation of the left ventricle compared to each
single view reconstructions. The quantitative measurements of
left ventricle volume using new reconstruction method are also
in better agreement with the standard 2D clinical measurements
than single view reconstruction estimates [5].
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C. Semi-automatic segmentation
In the segmentation experiments, we set parameters

empirically as x = 0.1, E = 0.8,81 = l2 = 6 . First, we
evaluated the performance of the new sequence segmentation
method on eight sets of phantom image sequences.

We required that the users provided a rough, initial curve
on one arbitrary frame in the image sequence, to initialize the
segmentation. Normally, we initialize the segmentation
procedure on an image in the middle of the sequence. The
segmentation procedure then proceeds to automatically
segment images before and after the middle image. Each frame
segmentation is initialized by using the segmentation result
from the previous frame, allowing for a quick convergence.

Fig. 1 shows a phantom image sequence with fairly low
image contrast and high level of speckle noise and the
segmentation results using the new GVF GAC method.

To quantitatively validate the segmentation results, we used
three evaluation methods. First, the correlation coefficient was
calculated between the areas enclosed by the new model
generated boundaries and the areas enclosed by manually
outlined boundaries. Second, we computed the Hausdorff
distance and third, the mean absolute distance (MAD) to
measure the difference between the manual and automatic
segementation boundaries [11]. The Hausdorff distance
measures the distance between the points on two curves that
differ the most, while MAD provides the mean difference
between the two curves.

All quantitative evaluations are shown in Table II. In the
last column of table, we present the percentage of successfully
segmented images (via visual inspection) as a fraction of all the
images that were acquired (normally 40 to 50 image frames) in
the sequence.

TABLE I. PHANTOM SEQUENCESE SEGMENTATION VALIDATION

HSIudorff Correlation
Sequtences MAD(nmm) Distance (mm) Coefficient of

Area

1 (40 ftrames)

2 (40 franies)

3 (40 htieiis

4 (40 frame)

5 (44 fratmes)

6 (41 fimaies)

7 (44 frames)

8 (47 fimes)

o 983
a =0.496)
0.654

a A.388)
o.786
0=0.516)

0.480
(1=0293)

0w510
0 0- 230)
0.469

o -0.229)
0.477
0-.9. 168)
0.388
o0. 165)

3.108
0 =2 017)
1.423

o A.815)
21719
=2.043)
1198

a -0.753)
24175

6 1 117)
1.963
o-0.991)
1.847
1-1.116)

1.591
oI0844)

O.9593

o.9860

0.9947

0.9961

o.9926

o 9946

0-9949

Percent

87.5%

90.0%

72 5{

81SOo

78. 1o

86 4%

87.2%

For the two echocardiography image sequences, we picked
the sequences to cover a full cardiac motion cycle (ES-ED-ES).
Both of the sequences from the parastemal and apical views
have 26 frames. The parastemal short-axis view sequence
segmentations are shown in Fig. 2. During the sequence
segmentation, we used visual inspection of each image to judge
whether it had been successfully segmented or not. If one ofthe
frames in the sequence did not show acceptable segmentation,
we had to reinitialize that frame to restart a segmentation
procedure for it and the following frames. The results in Fig. 2
show that the new semi-automatic segmentation method
performed well.

Table III shows the mean and standard deviation of the
MAD and Hausdorff distance of the two echocardiography
sequences segmentation. We note that eventhough the two
sequences segmentations have similar correlation coefficients
for the enclosed area; the distance error measurements (MAD
and Hausdorff distance) have a relatively bigger difference.

TABLE II. ECHOCARDIOGRAPHY SEQUENCE SEGMENTATION
VALIDATION

Ellhwardiograpy MAD)
Sequences (mm)

Htudorif Disitance
(mm)

Parastemal O794 3.656
(26 frms ( 07 272) ( o -11210)

Apieal 1 267
(26 ftae" ( -0 266)

4 261

( 09-.899)

correlatibin
Coefficiet of

Area

0.9814

OM9Xf2

Figure 1. Phantom image sequence segmentation.

IV. CONCLUSION

Multi-view freehand acquisitions can provide more
complete coverage of the target object anatomy. Unlike
previous methods, our new approach does not require that there
is good spatial alignment between the different view sweeps,
and it does not require manual registration by the users.
Accurate reconstruction is achieved through a new geometric
registration method, which is performed in a fully automatic
mode.
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The new adaptive GVF GAC segmentation algorithm has
proven to be robust in segmenting objects with significant level
of speckle noise, weak edges, and small gaps that are often
associated with echocardiography images. As the results show,
the new method is insensitive to the initialization of the
deformable curve and avoids edge leaking. It allows for quick
convergence and accurate segmentation.

An extension of this work is to validate on more
echocardiography data sets acquired from multiple acoustic
windows. A more objective and accurate comparison would be
to compare left ventricle volumes and other cardiac parameters
with cardiac magnetic resonance (M) data.
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Figure 2. Parasternal short-axis sequence segmentation.
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