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Abstract- This paper presents a new Independent Component
Analysis algorithm (ICA-P) for modeling and measuring
physiological responses to optical stimulation from a new, non-
invasive optical imaging device. The ICA-P algorithm uses prior
information on the visual stimulus to provide improved detection
performance. In comparison with other methods that were
considered (JADE, Infomax, SOBI, ESD, and Fast-ICA), ICA-P
is shown to achieve significantly improved performance in
detecting the retinal response to visual stimuli. Results from
simulations show that we can estimate retinal reflectance changes
as small as 0.01% (-40 dB, 10 dB lower than the other considered
methods).
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I. INTRODUCTION

In the field of ophthalmology, visual field testing
(perimetry) is the gold standard for detection and monitoring
progression of diseases in the optic nerve. Perimetry is a
functional test of the patient's vision, which is intended to
detect defects on the visual field map. Unfortunately,
perimetry remains a subjective test that requires the patient to
make important judgments during the test that can be clouded
by anxiety, fatigue, or lack of concentration. Additionally, the
sensitivity of this test is poor. Investigators have found that
over fifty percent loss of ganglion cells is necessary to detect
loss of function with perimetry [1]. This results in poor
repeatability in areas where functional damage is suspected.

An optical imaging device of retina function (OID-RF) has
been developed in an attempt to improve the objectiveness of
the test and the sensitivity for detection of damage and change
over time [2]. The OID-RF measures physiological changes in
the retina due to neural activity resulting from visual
stimulation of the photoreceptors.

The resulting optical recordings (videos) from the
functional imaging device are a mixture of the signal that
reflects the neuronal activity (functional signal) and signals
related to unknown background sources and noise.
Unfortunately, measured changes in reflectance in response to
the visual stimulus are on the order of 0.1% to 1.0% of the total
reflected intensity level which makes the functional signal
difficult to detect by standard methods since it is masked by the
other signals that are present. This paper is based on the
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application of Independent Component Analysis, a statistical
signal processing technique, on the data obtained from the
OID-RF.

In most adaptive filtering applications, an input and an
output to a system are provided and the task is to determine the
mathematical properties of the filtering system [3]. In recent
years, a group of researchers investigated problems where not
only the system is unknown, but also little is known about the
inputs (sources). This work led to the development of
independent component analysis (ICA), a set of statistical
signal and image processing tools and algorithms that try to
solve the blind source separation problem.

ICA has been applied to many biological problems such as
electroencephalography (EEG), data analysis [4] and
electrocardiogram (ECG) data analysis [5]. ICA has also been
applied to extract functional brain responses due to visual or
motor stimuli using recordings from techniques such as fMRI
[6] and fNIR [7]. Schiessl et al. applied ICA techniques to
isolate changes on the brain cortex of a macaque monkey due
to visual stimulation [8]. The authors of this work have applied
ICA techniques [9-10] to isolate the changes produced in the
cat and human retina due to visual stimulation. This paper
extends our prior work by incorporating prior information into
the ICA algorithm.

This paper is organized as follows: Section II presents a
description of the OID-RF. In section III the ICA methods are
discussed. Section IV presents the results of the comparison of
the ICA methods using synthetic and live data. In section V, a
discussion of the results is presented.

II. OPTICAL IMAGING DEVICE FOR RETINAL FUNCTION

A. Biological Principles
Traditionally, neuronal activity in the central nervous

system including the retina has been recorded electrically [11].
Recently however, noninvasive optical recording of neuronal
signals from the brain has become possible [12]. Natural
changes in the optical properties of active brain tissue (referred
to as "intrinsic signals") permit visualization of neuronal
activity when the surface of brain tissue is directly imaged
using sensitive CCD cameras.

1-4244-0785-0/06/$20.00 1961



In our case, the intrinsic signals refer to the change in the
percent reflectance of illuminating (or interrogating) light
occurring as a result of the change in the absorption coefficient
due to the conversion of oxyhemoglobin to deoxyhemoglobin
in response to the metabolic demands of active neurons. The
interrogating light is band-restricted to wavelength(s) where the
difference in absorption spectra between the oxyhemoglobin
and deoxyhemoglobin molecule is the greatest, typically in the
region of 580-700nm.

Other sources of the intrinsic signals include changes in the
microcirculation and light scattering that are also dependent on
neuronal activity. The intrinsic signals from the brain are
usually very small (0.1 to 1.0% of the overall reflected light
intensity). However, when properly imaged, they can have high
spatial resolution (50 microns) corresponding to the areas of
active neuronal activity.
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Figure 1. Optical pathway of the OID-RF

B. OID Specifications
The first OID-RF prototype was built using an existing

commercial fundus camera and modifying the optical path by
selectively filtering the continuous light source in the fundus
camera to achieve an interrogation wave band. A stimulus
pattern was presented at one wavelength (SS0nm), while
interrogating the difference in reflectance due to
oxyhemoglobin saturation change at a different wavelength
(700 to 850 nm), using the same optical path. The 550 nm
wavelength is called the stimulation wavelength, while the 700
to 850 nm wavelength is called the interrogation wavelength.

Fig. 1 shows a scheme of the optical array of the OID-RF.
Band limited interrogation light source and a stimulus pattern
in a different wavelength are projected to the retina. The
reflected light from the retina is filtered by the beam splitter to
only allow the interrogation light to pass through the CCD
camera. The instrument was tested so that no light from the
stimulus leaks into the camera. This would introduce false
signals into the camera's field of view.

III. METHODS

A. Independent Component Analysis

Let x = [xl (t)x, (t)...x (t)]T be a set of observed random
variables and assume that they come from the linear mixture of

the components S = [s1 (t) S2 (t) ... S, (t)]T by a mixing matrix

A, as in

X =AS. (1)

Then independent component analysis consists of
estimating both A and S using only the observations in X
and the assumption that the source signals are statistically
independent [5].

In this paper we present an ICA algorithm using prior
information about the visual stimulus. This algorithm will be
compared to three different ICA algorithms: Infomax [13];
which uses maximum likelihood estimation (MLE) to extract
the sources that give the highest probability for the
observations; JADE [14] a popular ICA algorithm that consists
on using higher-order cumulant tensors; and SOBI [15] a
method that incorporates time structure in the estimation of the
sources.

B. ICA Using Priors
In the basic ICA model, no information is available about

the original sources or the mixing matrix. But in many cases,
some prior information about the system is known and it can be
incorporated into the unmixing process. This will certainly be
our case here since we know the onset and offset of the visual
stimuli which indirectly gives us information about the mixing
matrix. Calhoun et al. [6] used prior information on fMRI
experiments to determine spatial locations and temporal
information about the extracted sources.

For this work, a simplified version of Calhoun's algorithm
was used. The Infomax algorithm is modified so that we
incorporate prior information at each update cycle. The Bell-
Sejnowski form of the Infomax algorithm is used, where the
negative log-likelihood function for the unmixing matrix is
given by:

f(W)=- NlogjWj-cosh(WX)-NMlog(z)], (2)

where N and M are the dimensions of the data. The
gradient for this function is given by:

AW =-LNW tanh(WX)XT] (3)

Using the log-likelihood function and the gradient we can
use an optimization method to obtain an estimate of the mixing
matrix. We used the BFGS method for unconstrained
optimization. At each iteration, a normalized cross-correlation
measure between the estimated mixing matrix and the prior of
the mixing matrix is performed. If the correlation is lower than
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a tolerance value t then the estimated mixing matrix is updated
as:

wi = wi + c w-wi) (4)

where W' is the i-th column of the estimated mixing matrix,
W' is the prior for that column and c is the confidence value
(between 0 and 1) for the prior information. For c = 0 there
will be no change in the estimated mixing matrix, while for
c = 1 the estimated mixing matrix will be transformed
completely into the prior.

IV. SIMULATION RESULTS

In the ICA literature there have been many efforts to
quantify the performance of the algorithms [16]. Most of these
efforts are confined to one-dimensional data sets, with few
focusing on 2-dimensional data and almost none on the three-
dimensional video applications. It is therefore important to
explore the performance of the selected ICA algorithms in
realistic simulations of both general spatiotemporal data-sets as
well as more specific data sets that are constructed from actual
optical imaging data from the OID-RF device. In this section
we present results from both a synthetic video simulation and a
hybrid simulation using live data and synthetic stimuli.

A. Synthetic Video Simulations
A synthetic video is generated by mixing three images

(sources) with a mixing matrix that contains the temporal
structures of two sinusoids and a smoothed negative step
function.

Figure 2. Experimental setup for the synthetic video simulation: Mixing
matrix (left), sources (middle), and mixtures (right)..

1) Experimental Setup
Fig. 2 gives a graphical scheme of the mixture of the

signals. The mixing matrix contains the temporal signal with
40 samples each. The temporal signals are:

* Sinusoid #1: Period is 20 samples, peak-to-peak
amplitude is 2 (units are arbitrary).

* Sinusoid #2: Period is 10 samples, peak-to-peak
amplitude is 2.

* Smoothed negative rectangular function: This function
is formed as a union of two. The amplitude of this
signal varies in three different experiments: 10 %, 5%,
and 1% of the peak-to-peak amplitude of the sources.

The spatial signals are three 16-by-16 pixels binary images.
The bright regions in those images (middle of Fig. 3) have a
value of 1. The bright regions in the images were designed in
such a way that when the linear mixture is performed using the

mixing matrix, all mixing possibilities are covered. There are
three regions which contain one temporal signal, three regions
which are a mixture of two temporal signals and one region
which contains a mixture of all the temporal signals described
before. In total there are 7 different regions plus the
background. The spatial arrangement also covers all the
possible combinations of spatial mixing: (i) Three regions with
one signal each, (ii) three regions with a mixture of two signals
each, (iii) one region with a mixture of all the signals, and (iv)
the background where no signal except noise is present.

The resulting mixture is a video with 40 frames (number of
time points in the mixing matrix) and 256 pixels each frame.
The video is input to the ICA matrix in a matrix form and the
results of the estimation should give us the temporal structure
(in the estimated mixing matrix) and the spatial structure (in the
estimated sources). Noise is also added in the simulations,
ranging from 40dB to OdB in 10dB intervals.

2) Synthetic Video Results
The results of the normalized cross-correlations between

the estimated sources and estimated mixing matrices are shown
in Figs. 3 and 4. The "temporal" results refer to the comparison
of the columns of the mixing matrices while the "spatial"
results refer to the comparison of the sources with their
estimated counterparts.

Spatial results for the rectangular signal (Fig. 3) show an
increase in the performance of the ICA-P compared to the
regular Infomax algorithm, but it is still 10% less accurate than
JADE, especially for the 10% and 5% signals in the 40 to 20dB
range.

The ICA-P achieves the best results in the temporal
estimation of the rectangular signal in the video simulations.
Fig. 4 presents the plots for the temporal estimation of the
rectangular signal and it is clear how ICA-P matches the
performance of JADE for high SNR and greatly improves the
performance for low levels of SNR. These levels are where we
had the most difficulty estimating the rectangular signal,
especially when the signal is 1% of the peak-to-peak amplitude
of the sinusoids.

Figure 3. Spatial NCC results for the rectangular signal. Comparative
results for JADE, Infomax, and ICA-P.
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Figure 4. Temporal NCC results for the rectangular signal.

B. Hybrid Simulations
The next simulation involves both live data and synthetic

stimulation. We use the OID-RF recordings from an

unstimulated cat retina and add synthetic stimuli at different of
levels of signal-to-background ratio (SBR). The synthetic
stimuli are obtained from actual recordings of stimulated cat
retina and synthesized so they can be easily manipulated in our

simulation.

1) Experimental Setup
To synthesize the stimuli, we used a live cat experiment

recording that presented a clear response and extracted a

spatiotemporal profile of the response change during the
experiment. The resulting "stimulation video" was then
averaged and filtered to produce a smooth response and
normalized to unit variance so it can be manipulated to produce
the desired level of simulated response.

In the hybrid simulation no noise is added to the mixture.
Instead, the amplitude of the stimulus is controlled by the
signal-to-background ratio (SBR), defined as:

SBR(dB) =Olog102 (5)

where o7 is the variance of the functional signal and O7 iS

the variance of the background.

Five videos were synthesized starting with the SBR ranging
from 0 dB to -40 db at -10 dB intervals. Note that the more

negative the SBR value, the lower the amplitude of the
functional signal. A 0 dB SBR indicates that the variance of
the functional signal is equal to the variance of the video,
whereas a -30 dB SBR means that the variance of the
functional signal is 0.1% of the variance of the video. Fig. 5
shows nine frames of a sample hybrid video at -20 dB SBR.

2) Hybrid Simulation Results
The results of the ICA algorithms were compared in the

temporal and spatial domains. In the spatial domain, we

correlated the sources as estimated by the ICA algorithms with
a "reference frame," which is an image artificially generated by
using a frame of pre-stimulated retina and the artificial stimulus

Figure 5. Sample frames from a hybrid video. Note the vertical
synthetic stimulus on frames 8, 10, and 12.

response on top. For the temporal comparison, each row of the
estimated mixing matrix was correlated with the modeled
functional responses. A high correlation means that the
estimated mixing matrix is following the time trace of the
functional response expected due to visual stimulation.

The application of the ICA-P algorithm in the hybrid
simulation yields similar results as with the synthetic video
simulations. Increased NCC values are observed in the
temporal cases (Figs. 6a and 6b) and a decrease compared to
the Infomax in the spatial case (Fig. 6c). Note that the priors
represent information about the mixing matrix. Therefore, in
the spatial domain, it is somewhat expected that we increase
the performance in the temporal domain and decrease it in the
spatial domain. This is not a problem, since one of the most
difficult parts in analyzing the data is recovering the correct
temporal profile, and also we do not have (or use) priors in the
spatial domain.

(a)1AaxTernporal orrel (b)
(21

10 20
SNR (dB)

-e-- Inforax

O` JADE

- a- SOB1
-Am P

02L
0 -10 -20 -0 -40

Figure 6. Temporal and spatial correlation results for live data plus
synthetic stimulation experiments. (a) Temporal correlation results using

the temporal reference 1. (b) Temporal correlation results using the
temporal reference 2. (c) Spatial correlation results using the reference

frame.
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V. DISCUSSION AND CONCLUSIONS

The experiments have provided us with an improved
understanding of the limits of what ICA algorithms can
achieve, and how they can be improved. Our goal was to detect
functional responses on the order of 0.1% (-30dB) of the total
reflected signal. Our results showed how four ICA algorithms;
JADE, Infomax, SOBI, and ICA-P produced estimates of the
functional signals that were highly correlated with our
reference signals.

For the performance of ICA-P in the 3-dimensional
simulations, we note significant improvement over
conventional ICA algorithms. The results of the temporal
correlations for the synthetic video simulations (Fig. 5) showed
an improvement of up to 30 dB in SNR while detecting the
small (1%) rectangular signal when compared to the best
performer of the conventional algorithms (JADE). The results
on the hybrid simulations also showed an improvement in the
temporal correlations of about 0.05 in absolute normalized
cross-correlation. These results demonstrate the power of
introducing prior information about the temporal structure of
the experiments.

Significant improvement over the Infomax algorithm (in
which the ICA-P is based) has been achieved in the synthetic
simulations based on physiological data (Fig. 6). Moreover, the
ICA-P outperformed conventional ICA algorithms for up to 30
dB, proving to be a powerful tool for the analysis of complex
biological signals. In the problem of signal detection, the
requirement was to estimate signals as small as 0.1% of the
total intensity of the images, and we have achieved detection
for signals as small as 0.01% (-40 dB SBR) in the hybrid data
simulations.

Currently, the confidence and tolerance parameters are pre-
specified and need to be chosen for each specific application. It
is important to develop a way to automatically select the
parameters that yield optimal performance of the ICA-P
algorithm. Also, in addition to incorporating temporal prior
information, it would be interesting to investigate ways of
incorporating spatial priors to improve algorithmic
performance. One of the main hurdles in this problem is the
high dimensionality of the data in the case of spatial priors.

In conclusion, the analysis of the synthetic experiments has
given us useful information in determining the threshold of
stimulation that can be detected using the ICA algorithms. The
analysis of these experiments should be applicable to any area
where we have spatiotemporal mixing of the signals.
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