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Abstract

In this paper, we present new 3D Amplitude-Modulation
Frequency Modulation (AM-FM) methods for video im-
age analysis. We develop a framework that allows us
to reconstruct the input video using AM-FM representa-
tions and also provide motion estimates that correspond to
these AM-FM representations. The proposed motion esti-
mation method provides three motion estimation equations
per channel filter (AM, FM motion equations and a continu-
ity equation). The methods are implemented using efficient,
separable 1D filterbanks. We demonstrate the method in
motion tracking, trajectory estimation and video signal re-
construction.

1 Introduction

The AM-FM representation allows us to model non-

stationary 3D signal content in terms of amplitude and

phase functions. The method has been recently extended

to cover video applications in [1] using:

I(x, y, t) =
n=M∑
n=1

an(x, y, t) cos ϕn(x, y, t). (1)

In (1), a continuous signal I(.) is a function of

a vector of spatiotemporal coordinates (x, y, t).
A collection of M AM-FM component images

an(x, y, t) cos ϕn(x, y, t), n = 1, 2, . . . , M , are

used to model essential signal modulation structure. The

amplitude functions an(x, y, t) are always assumed to be

positive.

For each phase function ϕn(x, y, t) we define the

instantaneous frequency (IF) as the gradient of the

phase ∇ϕn(x, y, t). The instantaneous frequency vector

∇ϕn(x, y, t) can vary continuously over the spatiotempo-

ral domain of the image. The term AM-FM demodula-

tion is used to refer to the computation of the amplitude

function a(x, y, t), the phase function ϕ(x, y, t), and the

instantaneous frequency vector function ∇ϕ(x, y, t) from

the given input video I(x, y, t).
The proposed method is an extension of our prior work

in [1, 2] and it is also closely related to phase-based meth-

ods for motion estimation [3]. In [2], we introduced robust

methods for 2D AM-FM demodulation using 2D, separable,

multiscale filterbanks. In [1], we extended the multiscale

method to 3D.

We first use 3D dominant component analysis (see [4]

for the 2D case) to determine the dominant channel for de-

modulation. At every pixel, for the dominant channel, we

then proceed to estimate the 3D instantaneous frequency

and amplitude components. We then proceed to formulate

AM, FM and continuity constraint equations as discussed

in [1]. The important contribution of [1] over the initial

work of [3] is that we consider both AM and FM constraint

equations. In [3] and other phase-based research, the AM

components are not used in the estimation. Yet, in [1], we

demonstrated that the AM and the FM constraint equations

are equally important.

In this paper, we consider three extensions of our prior

work in [1]. First, we consider video reconstructions us-

ing 3D AM-FM decompositions. Second, we consider mo-

tion estimation over multiple scales (an extension of our 2D

work in [2]). Third, we provide motion trajectories over the

tracked videos to demonstrate the utility of our approach

over general videos.

We describe our methods in section 2. Results are shown

in section 3 and finally, the conclusions are given in section

4.

2 Methods

2.1 Video Reconstruction

In this section, we discuss how to reconstruct a 3D signal

using its AM-FM components. We consider two different
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procedures: using AM-FM harmonics (Sec. 2.1.1) or using

AM-FM components extracted from different scales (Sec.

2.1.2).

2.1.1 Least-Squares Reconstructions using AM-FM
harmonics

We consider reconstructing a 3D signal using AM-FM har-

monics (see [2] for a related 2D model):

Î(n1, n2, n3) =
n=h∑
n=1

cna(n1, n2, n3) cos (nϕ(n1, n2, n3)) ,

(2)

where h represents the number of AM-FM harmonics, and

n1, n2 and n3 represent the discrete versions of x, y and

t. In (2), we assume that the instantaneous amplitude

a(n1, n2, n3) and the instantaneous phase cos ϕ(n1, n2, n3)
have been estimated using dominant component analysis

(DCA).

We then want to compute the AM-FM harmonic coeffi-

cients cn, n = 1, 2, . . . , h, so that Î(n1, n2, n3) is a least-

squares estimate of I(n1, n2, n3) over the space of the AM-

FM harmonics. This is accomplished by first computing an

orthonormal basis over the space of the AM-FM harmon-

ics using the Modified Gram-Schmidt (MGS) Algorithm

(see [5]). We then obtain the least square estimates directly

by simply projecting the input video on the orthonormal

AM-FM basis functions and then map the coefficients back

to the original harmonics.

2.1.2 Multiscale least-squares reconstructions

In this paper, we consider AM-FM methods based on the

use of multiple scales (see [2] for the 2D case). In analogy

to [2], we only consider one, two and three decomposition

levels. We then proceed to estimate dominant dominant AM

and FM components over each scale, as well as the low-pass

filter.

It is important to recognize that adding decomposition

levels also reduces the total amount of video signal energy

that is captured by the decomposition. As we shall explain

next, this is a direct consequence of our desire to localize

the spatiotemporal content at each pixel. First, let us note

that for a single scale decomposition, video signal energy

is captured by the low-pass filter component and the dom-

inant high-frequency components, selected from the high-

frequency channels. Then, in two-scale decompositions, the

3D spectrum captured by the low-pass filter is further de-

composed into two new scales. We again find the dominant

components in this second scale while the lowest frequency

components are captured by the new low-pass filters. Sim-

ilarly, for three-scales, we decompose the frequency spec-

trum of the 3D low-pass filter.

The extracted dominant components from each scale

allow us to provide decompositions using an indepen-

dent AM-FM component per scale. Furthermore, the cor-

responding dominant channel filters allow us to extract

local spatiotemporal content over each pixel. This ap-

proach allows us to re-formulate the classical motion es-

timation problem with several independent equations over

each scale. It is also important to note that the AM-FM

decomposition also allows us to track both continuous and

discontinuous motions since at every pixel we can asso-

ciate three different dominant channels from three different

scales.

2.2 Motion Estimation

We now review the method developed in [1,3], detailing

how to estimate motion parameters over each spectral chan-

nel. In what follows, we assume an AM-FM component

model for the output of each channel:

I(x, y, t) = a(x, y, t) exp(jϕ(x, y, t)). (3)

In [1], we derived the smoothness, AM and FM constraints:

Es =
∫∫ [

u2
x + u2

y + v2
x + v2

y

]
dxdy. (4)

EAM =
∫∫

[axu + ayv + at]
2
dxdy (5)

EFM =
∫∫

[ϕxu + ϕyv + ϕt]
2
dxdy. (6)

We combine all constraints together to get the final expres-

sion

E = Es + λEFM + βEAM . (7)

To solve (7), we iteratively compute velocity estimates at

each iteration p using:

u(p+1) = u(p)
ave − λ

uN1

D
ϕx − β

uN2

D
ax (8)

v(p+1) = v(p)
ave − λ

vN1

D
ϕy − β

vN2

D
ay, (9)

18



where:

uave(m, n) =
1
4
[u(m + 1, n) + u(m − 1, n) + u(m,n + 1)

+ u(m,n − 1)],

vave(m, n) =
1
4
[v(m + 1, n) + v(m − 1, n) + v(m,n + 1)

+ v(m,n − 1)],

uN1 =
(
ϕx + βa2

yϕx − βayaxϕy

)
uave + ϕyvave

+
(
βa2

y + 1
)
ϕt − βayϕyat,

uN2 = [λ (axϕy − ayϕx) ϕy + ax] uave + ayvave

− λayϕyϕt +
(
λϕ2

y + 1
)
at,

D = 1 + λ
(
ϕ2

y + ϕ2
x

)
+ λβ (ϕxay − ϕyax)2

+ β
(
a2

x + a2
y

)
,

and similarly for vN1, vN2, after exchanging x with y
derivatives. We initialize the estimation by using zero-

velocity estimates. Using the estimated motion vectors, we

apply a Kalman filter to track the trajectories throughout the

video.

We also note that we can generate pure AM and pure FM

estimates by manipulating the constraint coefficients (λ, β)

in (7). For generating FM estimates, we simply use β = 0.

Similarly, for AM estimates, we set λ = 0. For AM-FM

estimates, we simply use λ, β �= 0. We typically set λ, β to

about 10 so the solution will more closely track the optical

flow constraint equation(s) (see (5) and (6)).

3 Results

In this section, we present video reconstruction and mo-

tion tracking results from the taxi video sequence (see Ham-

burg taxi video in [6]) and for a two people fighting video
(see [7]).

We summarize video reconstruction results in Tables 1,

2, 3 and 4, and Fig. 1. We provide the mean squared error

(MSE) in Tables 1 and 3. Here, we note that the zeroth-scale

refers to least-squares reconstruction using the low-pass fil-

ter output from each scale. This low-pass filter varies with

scale as we detailed in the methods section. It is interest-

ing to note the relative importance of the different scales as

summarized in the optimal coefficients in Tables 2 and 4.

In Table 2, we note that in three-scale reconstructions, the

second scale AM-FM component coefficient is equal to the

low-pass filter component. As we shall see, the motion es-

timates from this level will prove very useful. On the other

hand, the use of AM-FM harmonics did not reduce the MSE

by any significant amount. In Table 4, for three-scale recon-

struction, we see significant values for AM-FM coefficients

for all scales.

We show two different targets to demonstrate the inde-

pendence among the AM, AM-FM and the FM estimates.

Table 1. MSE in the taxi video.
Multiscale least-squares reconstructions

levels single-scale two-scale three-scale

0 34.7781 115.1141 186.2611

0, 1 34.5966 110.9505 185.2432

0, 1, 2 - 110.7431 180.1949

0, 1, 2, 3 - - 179.9799

Reconstructions using AM-FM harmonics

harmonics single-scale two-scale three-scale

1 34.7336 115.3749 202.3249

2 34.5546 115.3658 201.5240

3 34.2859 115.3632 197.0237

4 34.2842 115.2712 194.7118

5 34.2179 115.1972 194.6775

Table 2. Coefficients used in the taxi video.
Coefficients for AM-FM reconstructions from multiple scales.

level single-scale two-scale three-scale

0 0.9967 0.9999 1.0011

1 0.3459 1.0007 0.2205

2 - 0.3698 1.1030

3 - - 0.3765

We show a person tracking example in Fig. 2 (a). In this

example, both the AM and the dominant AM-FM compo-

nent equations provide good trajectory tracking results. It

is interesting to note that in this case, the person image is

well-localized and its motion appears to be easier to follow.

It is much more interesting to examine the FM tracking

results over the taxi region (see Fig. 2 (b)). Tracking indi-

vidual pixels over the taxi region proved to be much more

challenging. To understand why, we simply note the uni-

form intensity regions over the surface of the taxi. Yet, the

FM motion equation provided nice trajectory tracking re-

sults over the edges of the taxi images. We note that these

nice tracking results could not have been reproduced with

the AM motion equations.

Table 3. MSE in the fight video.
Multiscale least-squares reconstructions

levels single-scale two-scale three-scale

0 73.6264 156.8473 216.8916

0, 1 73.6263 155.8162 215.9473

0, 1, 2 - 155.7542 214.0385

0, 1, 2, 3 - - 211.3922

Reconstructions using AM-FM harmonics

harmonics single-scale two-scale three-scale

1 73.7216 157.2826 225.0483

2 73.7179 154.9638 222.8834

3 73.4665 154.9636 221.4078

4 73.4570 154.5769 220.1254

5 73.4135 154.5308 220.1254
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Table 4. Coefficients used in the fight video.
Coefficients for AM-FM reconstructions from multiple scales.

level single-scale two-scale three-scale

0 0.9972 0.9987 0.9991

1 0.0037 0.7138 0.7012

2 - 0.1070 0.8942

3 - - 0.6987

4 Conclusions

In this paper, we have developed the theory and applica-

tion of new methods for video image analysis using AM-

FM representations. We have shown video reconstructions

using AM-FM harmonics from multiple-scales. Further-

more, we showed how AM-FM demodulation over a single

channel filter can contribute three different equations (AM,

FM, and continuity equations). Thus, compared to existing

standard methods of using two motion equations per pixel,

the proposed AM-FM methods can be used to generate three

equations per channel. In addition, the AM-FM approach

provides reconstruction methods for the input video.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Video reconstructions for the
videos (we only show frame 1) using dom-
inant components from each scale. (a)-(b)
Single-scale. (c)-(d) Two-scale. (e)-(f) Three-
scale. (a), (c) and (e) Taxi video. (b), (d) and
(f) Fight video.

(a) (b)

Figure 2. Frame 1 of the taxi video for track-
ing with the motion estimated during the
video. (a) Zoom in the person. (b) Zoom in
the taxi.
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