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Abstract—We develop new amplitude-modulated frequency-
modulated (AM-FM) based methods to address some issues as-
sociated with the semantic gap between visual and mathematical
features presented by retinal diseases such as age-related macular
degeneration (AMD). Through the processing of simulated and
real, clinical retinal images we gain an understanding of the
effects of basic morphological characteristics of lesions associated
with AMD. Through synthetic simulations, we discuss how
histograms of the instantaneous amplitude and the instantaneous
frequency magnitude, extracted from different scales, can be
used to differentiate between images of different sizes and
edge sharpness, while maintaining invariance with respect to
rotations. We show that AM-FM features extracted from low
and very-low frequency scales can clearly differentiate between
retinal images containing Temporal Concentrated Drusen (TCD)
and Geographic Atrophy (GA). Shape, size, distribution and
edge sharpness are visual features used by ophthalmologists in
identifying lesions such as drusen. We propose the use of new
AM-FM derived features to quantitatively define these visual
descriptions.

I. INTRODUCTION

Macular degeneration, a progressive eye condition, affects
up to 15 million Americans and millions more worldwide
[1]. In adults over 60, in the USA, age-related macular
degeneration (AMD) is the first cause of severe vision loss and
blindness. Even though AMD never causes total blindness by
itself, it robs those affected of their sharp central vision and
can dim contrast sensitivity and color perception. There are
two types of AMD: ‘wet’ and ‘dry’. Although there is no
cure for AMD, there are treatments for the ‘wet’ type but not
for the ‘dry’ type.
A number of different methods applied to AMD image

analysis worked directly with the intensity information of the
images [2]–[6]. In such approaches, an illumination correction
is often a pre-processing step [2], [3], [6]. Furthermore,
decisions are based on thresholds applied to the intensity, that
are adapted to the database.
In this paper, we develop multi-scale Amplitude-Modulation

Frequency-Modulation (AM-FM) methods. The use of AM-
FM methods allows us to extract detailed textured informa-
tion in terms of the instantaneous amplitude (IA) and the
instantaneous-frequency (IF) [7]–[10]. Here, we note that the
instantaneous frequency (IF) captures geometric structures
unaffected by illuminations and it is also invariant to rotations
and translations. We assess the effectiveness of an AM-

FM based content-based image retrieval (CBIR) technique in
identifying and retrieving retinal images with specified lesions.
An earlier application of AM-FM methods to CBIR can be
found in [11]. We investigate how AM-FM methods can be
used for characterizing edges, distribution and shape of the
drusen.
In section II we present some background information on

the use of AM-FM methods. In section III we develop AM-
FM methods that are specifically adapted for applications to
retinal image analysis. Results are given in section IV. We
provide a discussion in section V and concluding remarks in
section VI.

II. BACKGROUND
We consider multi-scale AM-FM representations of digital

images given by [10], [12]:

I(k1, k2) �

M∑
n=1

an(k1, k2) cosϕn(k1, k2). (1)

In (1), a digital image I(·) is a function of a vector of
spatial coordinates (k1, k2). A collection ofM different scales
are used to model essential image modulation structure. The
amplitude functions an(k1, k2) are always assumed to be
positive. Non-stationary images are represented using AM-
FM in terms of instantaneous amplitude and instantaneous
phase functions given by ϕn(k1, k2) (see for example [7]). The
basic idea is to let the frequency-modulated (FM) components
cosϕn(k1, k2) capture fast-changing spatial variability in the
image intensity. For each phase function ϕn(k1, k2) we define
the instantaneous frequency (IF) ∇ϕn(k1, k2) in terms of the
gradient

∇ϕn(k1, k2) =

(
∂ϕn

∂k1

(k1, k2),
∂ϕn

∂k2

(k1, k2)

)
. (2)

To estimate the instantaneous amplitude (IA), the instanta-
neous phase (IP) and the instantaneous frequency (IF), we can
first compute the extended version of the 1D analytic signal
[13]:

ÎAS(k1, k2) = I(k1, k2) + jH2d[I(k1, k2)], (3)

where H2d denotes a two-dimensional extension of the one-
dimensional Hilbert transform operator.
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We can then estimate the IA and the IP using:

â(k1, k2) = |ÎAS(k1, k2)| (4)

and

ϕ̂(k1, k2) = arctan

(
imag(ÎAS(k1, k2))

real(ÎAS(k1, k2))

)
. (5)

For estimating the IF we use a variable spacing, local
quadratic phase (VS-LQP) method [10], [12]. For VS-LQP
we first compute

ϕ̂1(k1, k2) =

1

n1

arccos

(
ĪAS(k1 + n1, k2) + ĪAS(k1 − n1, k2)

2ĪAS(k1, k2)

)
(6)

and

ϕ̂2(k1, k2) =

1

n2

arccos

(
ĪAS(k1, k2 + n2) + ĪAS(k1, k2 − n2)

2ĪAS(k1, k2)

)
,

(7)

where ĪAS(k1, k2) = ÎAS(k1, k2)/|ÎAS(k1, k2)|, n1 and n2

represent variable displacements, from 1 to 4, through columns
and rows, respectively. As discussed in [10], for low frequen-
cies, for more accurate estimates, we select the IF estimates
that yield the lowest arguments for the arccos(·) functions of
(6) and (7). For higher frequencies, we modulate the input
image to baseband prior to AM-FM demodulation.

III. METHODS

A. Four-scale filterbank design

In order to isolate different AM-FM components from (1),
we use a multi-scale filter-bank. Here, the basic idea is to
isolate different AM-FM components over different bandpass
filters (see [14] for details). Fig. 1 (a) depicts the frequency
support of this filterbank. In this design (see [10], [12]) each
bandpass filter has frequency support in only two quadrants
of the frequency spectrum.
The filters were designed using an optimum min-max,

equiripple approach. Passband ripple was set at 0.017dB and
the stopband attenuation was set to 66.02dB. For all filters,
the transition bandwidths were fixed to π/10.
In Fig. 1, filter 1 corresponds to a low pass filter (LPF)

with frequency support in [−π/16, π/16] for both the x and y
directions. For all the other filters, the bigger the label number
of the filter, the more compact the frequency support that it
has. The filters in the highest frequencies (filters from 2 to 7 in
Fig. 1), have a bandwidth of π/2 for both x and y directions.
The bandwidth is decreased by a factor of 0.5 for each added
scale. In Fig. 1 (b), we provide a closeup that shows the low
frequency filters.

TABLE I
BANDPASS FILTERS USED FOR ESTIMATING AM-FM IN A FOUR-SCALE

FILTERBANK.

Scale Bandpass filters

LPF Lowpass filter 1
VL Very low frequencies 20 - 25
L Low frequencies 14 - 19
M Medium frequencies 8 - 13
H High frequencies 2 - 7

B. AM-FM analysis by scales

We estimate AM-FM components over different scales (set
of frequency bandpass filters, see Table I, and also Fig. 1, for
correspondence between scales and bandpass filters). For each
AM-FM component we use dominant component analysis
(DCA) over the corresponding frequency bands (LPF, VL, L,
M and H from Table I). In DCA, at every pixel, we select
the AM-FM estimates from the bandpass filter that gave the
highest IA estimate.
From each scale, we use the histograms of both the instan-

taneous amplitude ai and the magnitude of the instantaneous
frequency (∇ϕi) given by ||∇ϕi|| as image features.
We use histograms of IA and the magnitude of the IF,

||IF||, to create a feature vector for characterizing the retinal
image. Using histograms from different scales the AM-FM
information extracted can be analyzed to find differences
among the characteristics of the images. For example, a region
containing soft drusen will have different estimates for IF than
a region with hard drusen. Using these histograms, we can
find if a certain frequency component that encodes a feature
is present at the image.

C. CBIR for the AMD images

We present an AM-FM approach for content-based image
retrieval (CBIR) for the AMD images. In this approach we
use the histograms of the IA and ||IF|| extracted from different
scales to construct a feature vector for image retrieval.
We use principal component analysis (PCA) to reduce the

numbers of bins in the histograms. We select the histogram
projections that account for 95% of the covariance. With this
new reduced feature vector from each image, we compute the
distances among all the images using correlation distance:

drs = 1−

(xr − x̄r) (xs − x̄s)
T[

(xr − x̄r) (xr − x̄r)
T
] 1

2

[
(xs − x̄s) (xs − x̄s)

T
] 1

2

, (8)

where x̄r = 1

n

∑
j xrj and x̄s = 1

n

∑
j xsj . With the computed

distances between every single pair of images, we create a
table of distances as shown in Table II. The retrieved images
are then presented in ascending order using the computed
distances from the query image.
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(a) (b)
Fig. 1. Four-scale filterbank used for retinal image analysis. (a) Complete
frequency spectrum of the filterbank. (b) Zoom on the low frequency bandpass
filters.

TABLE II
DEFINITION OF THE TABLE OF DISTANCES.

Image 1 Image 2

Image 2 distance{2,1}
Image 3 distance{3,1} distance{3,2}

IV. RESULTS

A. Synthetic Results

We use synthetic, elliptically-shaped images (see Fig.2) to
investigate how differences in shape, size, orientation and edge
sharpness influence the extracted AM-FM features. The AM-
FM histograms are presented in Fig. 3.
We first present results when using ellipsoidal images of

different sizes and the same blurring. In this experiment, we
use synthetic examples from Figs. 2(a)-(e). Estimations used
the entire filter-bank, yielding the histograms shown in Figs.
3 (a) and (b). In Table III we present the correlation distances
using the histograms information for this example. Distances
lower than 0.3 are highlighted.
In a second example, we investigate the effect on blurring,

regardless of size. Here, we avoid using the LPF in our
estimation, thus focusing on the fine edge details. For this
example, we use the ellipsoidal images of Figs. 2 (c), (e)-
(h). The resulting histograms are shown in Figs. 3 (c), (d). In
Table IV, we show the correlation distances using the ||IF||
histograms information for this example. The distances lower
than 0.3 are highlighted.
For both examples, for estimating the histograms, we con-

sider only the pixels that have an IA value bigger or equal
than the global IA mean. Thus, our distances are based on the
AM-FM values that gave the larger values.

B. Retinal Image Analysis

1) A retinal image by scales: We show an analysis by scales
using AM-FM for an eye with Large Central Drusen (LCD)
in Fig. 4. The original image is shown in Fig. 4 (a).
2) A CBIR example: We apply the method from sub-section

IV-B2 to retrieve digital images with eyes containing Temporal
Concentrated Drusen (TCD) and Geographic Atrophy (GA).

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 2. Synthetic experiments using different shapes, sizes and edge
sharpness: (a) large ellipses with major axis equal to 229 pixels and minor
axis equal to 115 pixels, (b) medium ellipses with major axis equal to 193
pixels and minor axis equal to 77 pixels, (c) small ellipses with major axis
equal to 155 pixels and minor axis equal to 39 pixels, (d) rotated small ellipse
is the same as in (c) but rotated by 30o, (e) rotated small ellipse is the same
as in (c) but rotated by 45o, (f) large ellipse is the same as in (a) but blurred
with a 19 × 19 averaging filter, (g) medium ellipse is the same as in (b) but
blurred with a 19 × 19 averaging filter and (h) small ellipse is the same as
in (c) but blurred with a 19 × 19 averaging filter.

TABLE III
CORRELATION DISTANCES FOR SYNTHETIC SIMULATION EXAMPLES (SEE
FIGS. 2 (A)-(E), FIGS. 3 (A)-(B)). WE USE LG TO DENOTE THE LARGE
ELLIPSE, MD FOR HE MEDIUM, SM FOR SMALL AND ROT FOR ROTATED

ELLIPSES. DISTANCES LOWER THAN 0.3 IN BOLD TYPEFACE.

(a) LG (b) MD (c) SM (d) ROT1 SM

(b) MD 0.118
(c) SM 0.773 0.794
(d) ROT1 SM 0.815 0.832 0.039
(e) ROT2 SM 0.848 0.882 0.048 0.022

We use the green channel from the original color images. In
Fig. 5, TCD images in (a)-(c) and GA images in (d)-(f).
We create the 64-bin histograms of IA and ||IF|| for each

image at the scales VL and L (see Table I). In Table V we
show the correlation distances. The distances lower than 0.5
are highlighted. For all the histograms, we consider only the
pixels that has an IA value bigger or equal than the 10% of
the maximum IA value. PCA was used to select histogram

TABLE IV
CORRELATION DISTANCES FOR ||IF|| FOR SYNTHETIC SIMULATION

EXAMPLES (WITHOUT LPF). HERE, WE USE BL TO DESIGNATE AN IMAGE
WITH BLURRY EDGES. DISTANCES LOWER THAN 0.3 IN BOLD TYPEFACE.

(h) SM BL (g) MD BL (f) LG BL (c) SM

(g) MD BL 0.116
(f) LG BL 0.059 0.099
(c) SM 0.603 0.330 0.595
(e) ROT SM 0.518 0.435 0.530 0.275
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TABLE V
CORRELATION DISTANCES IN THE CBIR EXAMPLE WHEN USING IMAGES
FROM FIG. 5. DISTANCES LOWER THAN 0.5 IN BOLD TYPEFACE. (A)-(C)

TCD IMAGES. (D)-(F) GA IMAGES.

(a) TCD (b) TCD (c) TCD (d) GA (e) GA

(b) TCD 0.478
(c) TCD 0.098 0.241
(d) GA 1.784 1.340 1.845
(e) GA 1.727 1.941 1.930 0.364
(f) GA 1.583 1.968 1.852 0.461 0.018

projections that account for 95% of the covariance.

V. DISCUSSION
When comparing elliptic shapes with different sizes (see

Figs. 2 (a)-(e)), using the entire filter-bank we are able to
distinguish among different sizes. In the first example, from
Table III, we can see how the distances for images with small
ellipses are lower than 0.05 compared with the big and medium
ellipses with distances bigger than 0.7.
In the second example, we can see that the instantaneous

frequency magnitude can help us distinguish between blurred
and non-blurred edges (see Table IV). Here, we can see that the
distances among blurred ellipses are lower than 0.15 compared
with those with no blurring, irrespective of the size of the
ellipse.
From the synthetic examples, it is clear that the AM-FM

estimates at different frequencies (or scales in this case) are
able to characterize different visual features of the images.
When using actual retinal images, we can see from Fig. 4 how
the AM-FM features extract image characteristics at different
scales. Here, we cannot see significant structural information
in the “Medium” and “High” scales (see Figs. 4 (r)-(y)). On
the other hand, it is clear that significant structural information
can be extracted at the “Very Low” and “Low” scales. For
example, at the “Very Low” scale, we note significant LCD
features that are extracted by AM-FM features (see Figs. 4
(j)-(m)).
Based on these results, we use only the “Very Low”

and “Low” scales for the CBIR application for our clinical
example. We can see in Table II the big differences in the
distances between images with TCD and images with GA.
For images of the same group, the distances are lower than
0.5 whereas the distance between an image with TCD and an
image with GA is always larger than 1.0.

VI. CONCLUSIONS
We have developed AM-FM methods for characterizing

retinal images. We show that AM-FM feature histograms
of the instantaneous amplitude and instantaneous frequency
magnitude can be used to differentiate between different
spatial sizes and edge sharpness. A four-scale filterbank was
used for extracting relevant image structure for real images.
In preliminary results, we show that good CBIR results can
be obtained from considering AM-FM estimates from the
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Fig. 3. IA and ||IF|| histograms for synthetic simulation examples. (a) IA
histograms using the entire filterbank, (b) ||IF|| histograms using the entire
filterbank, (c) IA histograms using the entire filterbank but without the LPF
and (d) ||IF|| histograms using the entire filterbank but without the LPF.

“Very Low” and “Low” scales. Shape, size, distribution and
edge sharpness are visual features used by ophthalmologists in
identifying lesions such as drusen. Visually these are referred
to as soft or hard drusen, and distributed versus confluent
drusen. Based on the preliminary results, we propose the use
of new AM-FM derived features to quantitatively define these
visual descriptions.
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