
 

  

Abstract—The objective of this study was to investigate the 
diagnostic performance of a Computer Aided Diagnostic 
(CAD) system based on color multiscale texture analysis for the 
classification of hysteroscopy images of the endometrium, in 
support of the early detection of gynaecological cancer. A total 
of 416 Regions of Interest (ROIs) of the endometrium were 
extracted (208 normal and 208 abnormal) from 45 subjects. 
RGB images were gamma corrected and were converted to the 
YCrCb color system. The following texture features were 
extracted from the Y, Cr and Cb channels: (i) Statistical 
Features (SF), (ii) Spatial Gray Level Dependence Matrices 
(SGLDM), and (iii) Gray Level Difference Statistics (GLDS). 
The Probabilistic Neural Network (PNN), statistical learning 
and the Support Vector Machine (SVM) neural network 
classifiers were also applied for the investigation of classifying 
normal and abnormal ROIs in different scales.  
Results showed that the highest percentage of correct 
classification (%CC) score was 79% and was achieved for the 
SVM models trained with the SF and GLDS features for the 
1x1 scale. This %CC was higher by only 2% when compared 
with the CAD system developed, based on the SF and GLDS 
feature sets computed from the Y channel only. Further 
increase in scale from 2x2 to 9x9, dropped the %CC in the 
region of 60% for the SF, SGLDM, and GLDS, feature sets, 
and their combinations. Concluding, a CAD system based on 
texture analysis and SVM models can be used to classify 
normal and abnormal endometrium tissue in difficult cases of 
gynaecological cancer. The proposed system has to be 
investigated with more cases before it is applied in clinical 
practise. 
Keywords—Hysteroscopy imaging, gynaecological cancer, texture 
analysis, color multiscale analysis, endometrium. 

I. INTRODUCTION 
Hysteroscopy is considered to be the gold-standard 

technique for the diagnosis of intrauterine pathology [1]. 
The physician guides the telescope connected to a camera 
inside the endometrium in order to investigate suspicious 
lesions of cancer [2]. A standardized protocol based on color 
imaging correction and texture feature extraction enabling 
the quantitative analysis for the assessment of 
gynaecological tissue in hysteroscopy imaging was 
published by our group [3]. Using this protocol, a Computer 

 
Manuscript received April 7, 2008.  
1Dep. of Computer Science, University of Cyprus, Nicosia, Cyprus,  
{mneoph, schizas, pattichis}@ucy.ac.cy 
2Aretaeion Hospital, Nicosia, Cyprus, v.tanos@aretaeio.com 
3Dep. of Electrical and Computer Engineering, University of New Mexico, 
NM, USA, pattichis@eece.unm.edu  
4Dep. of Computer Science and Engineering, Frederick University, Nicosia, 
Cyprus, ekyriac@ucy.ac.cy 

Aided Diagnostic (CAD) system was developed also by our 
group for the classification of normal and abnormal ROIs of 
the endometrium from hysteroscopy images [4].  

This system was based on the SF and GLDS texture 
analysis feature sets computed for the Y channel only where 
the highest percentage of correct classifications (%CC) 
score was 77%. The same system was also investigated but 
for the YCrCb space, for the SF and SGLDS feature sets 
where the highest %CC was 79% [5]. The objective of this 
new study is to investigated the diagnostic performance of a 
CAD system based on color multiscale texture analysis (for 
scales 1x1 to 9x9) for the classification of hysteroscopy 
images of normal and abnormal endometrium, in support of 
the early detection of gynaecological cancer. 

To the best of our knowledge, no similar study was 
carried out for hysteroscopic imaging of the endometrium. 
Gray-level texture analysis is widely used in numerous 
image processing and analysis tasks [5]. New studies, 
exploiting the usefulness of color texture have been 
presented by several researchers [6], [7]. In laryngoscopic 
imaging [8], suspect lesions were analyzed automatically 
using co-occurrence matrices with color differences between 
neighbouring pixels. A novel methodology for the extraction 
of color image features in colonoscopic video processing for 
the detection of colorectal polyps was developed in [9]. 
They utilized the covariances of the second-order statistical 
measures calculated over the wavelet transformation of 
different color bands. The rest of the paper is organized into 
four sections. In sections II, III and IV we present the 
methodology, results and concluding remarks respectively. 

II. METHODOLOGY 

A. Video Recording 
The CIRCON IP4.1 [10] medical camera was used. The 

analog output signal of the camera (PAL 475 horizontal 
lines) was digitized at 720x576 pixels using 24 bits color at 
25 frames per second, and was then saved in the AVI 
format. The Digital Video Creator 120 frame grabber was 
used [11].  
B. Material 

A total of 416 RGB hysteroscopy images from the 
endometrium were recorded from 45 subjects. ROIs of 
64x64 pixels were manually cropped and classified into two 
categories: (i) normal ROIs (N=208) and (ii) abnormal ROIs 
(N=208) based on the physician’s subjective criteria and the 
histopathological examination (see Fig. 1). 
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C. Transformation of RGB to YCrCb 

All RGB images were transformed to the YCrCb color 
system. This transformation was implemented using [12]: 
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In Fig. 1, we present in up-left the original RGB image of 
the endometrium and in up-right, down-left, down-right the 
transformed Y, Cr, and Cb images based on eq. (1).  

Fig. 1.  Endometrium images in (left to right) RGB, Y, Cr, and Cb space. 
Dotted blue and solid red boxes represent normal and abnormal ROIs 
respectively. 

D. Multiscale analysis 
 The goal of multiscale image analysis is to reveal image 
characteristics at different image resolutions. For example, 
small objects affect texture features at low resolution levels 
(with little or no downsampling involved because the 
information is centralized in all image), while larger objects 
affect texture features at higher resolution levels. Thus, if 
there is a particular range of scales, where we have objects 

of diagnostic interest, it is preferable to use this range for 
feature extraction in CAD systems. Within a single image 
scale, there is a number of different frequency bands that 
can be used for texture feature analysis.  

In this study, we only used the lowest frequency band. 
This was implemented by first applying a low-pass filter, 
followed by downsampling by a factor of 2 to 10 in each 
direction as illustrated in Fig. 2. Thus, our approach is 
closely related to generate a scale space, where the input 
image is convolved with Gaussians of different spreads. 
We note that significant differences exist between the 
downsampled images of Fig. 2. Yet, it is not easy to observe 
these differences without a very careful examination. In this 
study, texture features were computed for each the YCrCb 
channels for the scales 1x1, 2x2, 4x4, and 9x9. 

E. Feature Extraction 
The following texture features were extracted for the Y, 

Cr, and Cb channels. 
Statistical Features (SF): SF features describe the gray level 
histogram distribution without considering spatial 
independence. The following texture features were 
computed: 1) Mean, 2) Variance, 3) Median, 4) Mode, 5) 
Skewness, 6) Kurtosis, 7) Energy and 8) Entropy. 
Spatial Gray Level Dependence Matrices (SGLDM): The 
spatial gray level dependence matrices as proposed by 
Haralick et al. [13] are based on the estimation of the 
second-order joint conditional probability density functions 
that two pixels (k, l) and (m, n) with distance d in direction 
specified by the angle θ, have intensities of gray level i and 
gray level j. Based on the estimated probability density 
functions, the following 13 texture measures proposed by 
Haralick et al. were computed: 1) ASM, 2) Contrast, 3) 
Correlation, 4) Variance, 5) Homogeneity, 6) Sum Average, 
7) Sun Variance, 8) Entropy, 9) Sum Entropy, 10) Dif. 
Variance, 11) Dif. Entropy, 12) Inf. Correlation1, and 13) 
Inf. Correlation2. 
Gray level difference statistics (GLDS): The GLDS 
algorithm [14], [15] is based on the assumption that useful 
texture information can be extracted using first order 
statistics of an image. The algorithm is based on the 
estimation of the probability density pδ of image pixel pairs 
at a given distance δ=(Δχ,Δυ), having a certain absolute gray 
level difference value. Coarse texture images, result in low 
gray level difference values, whereas, fine texture images 
result interpixel gray level differences with great variances. 
The following features were computed: 1) Homogeneity, 2) 
Contrast, 2) Energy, 4) Entropy and 5) Mean.  

F. Image Classification 
The diagnostic performance of the texture features was 

evaluated with two different classifiers: the Probabilistic 
Neural Network (PNN), and the Support Vector Machine 
(SVM). These classifiers were trained to classify the texture 
features into two classes: i) normal ROIs or ii) abnormal 
ROIs. The PNN [16] classifier is basically a kind of Radial 
Basis Function (RBF) network. This classifier was 
investigated for several spread radii in order to identify the 
best for the current problem. The SVM network was 
investigated using the Gaussian Radial Basis Function 

Fig. 2.  Multiscale analysis of an endometrium gray scale image. 
Upper row: original image and images with downsampling rates 2x2 
up to 5x5. Lower row: images with downsampling rates 6x6 up to 
10x10. 
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(RBF) kernels; this was decided as the rest of the kernel 
functions could not achieve so good results. The SVM with 
RBF kernel was investigated using 10-fold cross validation 
in order to identify the best parameters such as spread of the 
RBF kernels. The leave-one-out method was used for 
validating all the classification models. A total of 3X416 
runs were carried out for training the classifiers, and the 
performance of the classifiers was evaluated on the 
remaining one subset. The runs were done in each of the 
three color systems. The performance of the classifier 
systems were measured using the parameters of the receiver 
operating characteristic (ROC) curves. We also computed 
the percentage of correct classifications ratio (%CC) based 
on the correctly and incorrectly classified cases.  

III. RESULTS 
Table I presents the Median and Semi Inter Quartile 

Range (SIQR) from selected texture features and statistical 
analysis for the Y, Cr and Cb channels. It is clearly shown 
that there was a significant difference for all texture features 
tabulated for normal vs abnormal ROIs of the endometrium 
for the Y channel but not for the Cr and Cb channels. 

As shown in Table I for the Y channel, abnormal ROIs 
had higher variance, but with smaller differences for the Cr 
and Cb channels. Also abnormal ROIs had lower median 
and contrast values when compared to the normal ROIs in 
the Y channel. There was no significant difference for the 
median and contrast features for the Cr and Cb channels.  

Table II presents the performance of the SVM and PNN 
CAD system investigated for classifying normal vs. 
abnormal endometrium tissue for the following scales: 1x1, 
2x2, 4x4 and 9x9 without using PCA. We also classify using 
the SF, SGLDM and GLDS features sets for the YCrCb 
color system.  

It is clearly shown in Table II that the SVM classifier 
performed better than the PNN classifier. For the SVM 
classifier, the best performance was achieved for the models 
of scale 1x1 for the SF+GLDS feature sets in the YCrCb 
system with %CC=79, followed by the SF+SGLDM+GLDS 
feature sets in the same system with %CC=77. The 
combination of the different texture features for the YCrCb 
system slightly improved the %CC. Similar performance 
was obtained when using only the Y channel features 
(%CC=77, see [5]). Further increase in scale from 2x2 to 
9x9, dropped significantly the %CC in the region of 60% for 
the SF SGLDM, GLDS, feature sets, and their combinations.  

IV. CONCLUDING REMARKS 
In this study, a CAD system based on color multiscale 
texture analysis for the classification of hysteroscopy images 
of the endometrium, in support of the early detection of 
gynaecological cancer was investigated. There was a 
significant difference for most of the SF, SGLDM, and 
GLDS texture features investigated between the normal and 
abnormal ROIs for all scales for the Y channel. 

 The highest percentage of correct classifications score 
was %CC=79 and was achieved for the SVM classifier for 
the SF+GLDS feature sets in the YCrCb system in the 1x1 
scale. This %CC was higher by only 2% when compared 
with the CAD system developed based on the SF+GLDS 
feature sets computed from the Y channel only. Further 
increase in scale from 2x2 to 9x9, dropped significantly the 
%CC in the region of 61% for the SF, SGLDM, and GLDS, 
feature sets, and their combinations because of the destroyed 
information of the image after the downsampling.  
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