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Abstract 
 
The purpose of this paper is to present a novel 
approach for extracting image-based features for 
classifying age-related macular degeneration (AMD) 
in digital retinal images. 100 retinal images were 
classified by an ophthalmologist into 12 categories 
based on the visual characteristics of the disease. 
Independent Component Analysis (ICA) was used to 
extract features at different spatial scales to be used as 
input to a classifier.  The classification used a type of 
regression, partial least squares. In this experiment 
ICA replicated the ophthalmologist’s visual 
classification by correctly assigning all 12 images 
from two of the classes. 
 

1. Introduction 
 

Age-related macular degeneration is the most 
common cause of visual loss in the United States and is 
a growing public health problem. Currently, almost 11 
million, or 7.6% of all Americans are estimated to have 
AMD, and it is the cause of blindness for 54% of all 
legally blind Americans. AMD is a major societal 
problem in terms of disability and health care costs. For 
example, severe AMD reduces the likelihood of 
employment by 61% and salary by 39%, while mild 
AMD reduces these by 44% and 32% respectively. The 
estimated annual cost burden from AMD in the U.S. is 
$30 billion (USD) or about 0.3% of gross domestic 
product [1]. The prevalence of AMD is expected to 
double over the next 25 years (CDC).  

AMD encompasses diverse and complex fundus 
appearance changes over the retinal surface and over 
time. The clinical hallmark of AMD is the drusen 
deposit, although deposition of other clinically 
invisible accumulations such as basal laminar and basal 
linear deposits may be more specific [2]. Drusen 
appear as white, round or confluent deposits between 
the basement membrane of the retina pigment 
epithelium (RPE) and the elastic portion of Bruch 

membrane [3]. Cross-sectional, longitudinal, and 
interventional studies by Bressler and others evaluating 
the role of drusen and other factors have shown that 
AMD visual outcome or prognosis are related to 
clinically visible characteristics [4]. These include the 
presence of large drusen (>125 m), the presence of 
multiple intermediate drusen (>63 to <125 m), the 
presence of pigmentary abnormalities, 
“hyperpigmentation”, and the contralateral disease 
severity.  The disorder shares with other forms of 
macular degenerations RPE atrophy and an increased 
incidence of choroidal neovascularization.  
 

2. Background and Related Work 
 

In order to search for the possible scale-based 
features that characterize AMD sub-classes, one may 
wish to use the computer-based analytical techniques of 
others. Peli and Lahav suggested that computer-based 
systems could emulate the human in detecting and 
segmenting features, such as drusen. Uneven 
illumination artifacts of the retina forced the 
application of sophisticated adaptive thesholding 
utilizing Otsu’s method, e.g. Morgan et al. and others 
[5]. 

Interactive techniques have been applied, driven by 
limitations of automated segmentation and algorithms. 
Shin and others since then have reported on interactive 
systems to quantitate macular drusen [6].These groups 
added a series of blurring and de-noising convolution 
filters to remove uneven lighting artifacts. This method 
was not objective or unbiased. It required a trained 
grader to optimize the gray level threshold based on 
their visual interpretation of the drusen margins. 
Mathematical morphology was further refined by 
Rapantzikos [7] and Wilson [8].  

An alternative approach is one based somewhat on 
the human vision system. Independent component 
analysis (ICA) does not explicitly attempt to segment 
the image into regions representing some type of 
feature such as drusen.  Rather, ICA uses the spatial 
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information within the context of an image or image set 
to extract independent components (ICs), or features, 
that are statistically independent. It may be viewed as a 
means to discover filters that are spatially and 
statistically independent and that best describe the 
information content of the image or image set. 

In other words, ICA reduces the redundancy in the 
samples and thus obtains the unique and independent 
‘features’ that represent the fundus image. There is 
extensive literature on the use of the ICA methodology 
for the purpose of extracting statistically independent 
components (features) from audio  and video signals 
and clinical electrophysiology [9, 10,  11]. We have 
previously reported on the application of ICA 
techniques to isolate the changes produced in the retina 
due to visual stimulation [9]. Our investigators have 
used and will also apply ICA to compute statistically 
independent features that are not dependent upon pre-
existing notions of what these features are or may 
represent [12].  

ICA applied to sets of images results in independent 
components, which are arrays of intensity values, and 
could also be called basis functions, feature detectors, 
or receptive fields. Within this grant we will refer to 
these as 'independent components' (see Figure 1). We 
elected to apply ICA because of the limitations of 
conventional feature detection techniques, which 
require prior knowledge of lesion structure and 
distribution.  

We and others have worked extensively on 
mimicking the performance of human graders with 

considerable success, using algorithms inspired by the 
physiology of the primate visual cortex [13, 14]. The 
technique, called pixel feature classification, is based 
upon characterization of each pixel within the image. A 
pixel is evaluated on its properties, called 'features', 
which are its response to less or more complex filters, 
such as intensity and color, and to highly complex 
receptive field properties responding to oriented texture 
patterns. For instance a pixel overlying the center of a 
retinal hemorrhage is evaluated on the basis of its 
features and then assigned its probability of belonging 
to a lesion. Grouping of pixels judged to have high 
probability of lesion are then assigned a likelihood of 
being a lesion. Pixel feature classification is powerful, 
scalable and has been shown to detect certain retinal 
diseases. The pixel-based approach has been suggested 
for large-scale diabetic screening and glaucoma 
progression. 

 

3. Image Processing and Analysis Methods 
 

A set of 100 images centered on the macula were 
digitized from our database of non-exudative (NE) 
AMD patients, Age-Related Eye Disease Study 
(AREDS) simplified scale, category 2 and 3. Image 
diameters were 2400 pixels or 4.5 micrometers per 
pixel with 36-bit color depth. Slide images were taken 
with a 30-degree Zeiss FF4 fundus camera using 
Ektachome 100.    

To perform this demonstration, the ophthalmologist 
(SRR), categorized the images into 12 phenotypes, two 
of which were “small distributed drusen, N=8” and 
“temporally concentrated drusen, N=16.” An example 
of each phenotype is presented in Figure 2a and Figure 
2b. Following the AREDS concept of assessing 
specified regions of interest (ROIs), for example the 
AREDS grid, two 512 x 512 regions were extracted 
from the each image. One was centered on the fovea 
while the second region was of the “outer temporal.” 
The phenotypes to be classified using ICA derived 
features were: a) small distributed drusen and b) 
temporally concentrated drusen (see Figure 2). 

To test the ICA methodology, five images from the 
small distributed drusen and six images from the 
temporally concentrated drusen phenotypes were 
selected. ICs were collected on each of the two ROIs 
for each of the images in the two phenotype classes. 
The ICs were calculated from 2500 samples from each 
ROI at three different scales, 6x6, 12x12, and 18x18 
pixels.  Figure 3 illustrates the nature of the ICs 
(features). This resulted in 3 sets (one for each scale) of 
32 ICs each. At this stage it was uncertain which scale 

 
Figure 1. Depiction of the process of image 
sampling by ICA algorithm, and a subset of 
the ICs that result. For each  color channel, 
samples X{1,2,3…n}, of scale P pixels by P 
pixels, are used as arguments for the ICA 
algorithm. The resulting set of ICs are 
represented by the P x P grayscale 
intensity image arrays, S{1,2,3,…,k}.  
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of ICA would optimize the differentiating features for 
the two phenotypes.   

Our hypothesis prior to conducting this ICA 
experiment was that those images classified as the 
“small temporal drusen” phenotype would display 

different feature characteristics than the “temporal 
concentrated drusen” phenotype when comparing 
features in the central region of interest. Conversely, 
the “temporal concentrated drusen” phenotype would 
have features that were distinctly different in the outer 
temporal region than the “small distributed drusen” 
phenotype.  

Partial least squares (PLS), a form of linear 
regression, was applied to the set of ICs in order to 
classify the four types of ROIs. One set of ROIs was 
for the small distributed drusen, central region (CC) 
and one set for the outer temporal (OT) [15]. The same 
two ROIs were used to collect samples for the 
temporally concentrated drusen phenotype.   

 

4. Results 
 

Figure 4 presents the results of the PLS as applied 
to the four sets of ICs. This analysis used the 12 x 12 
sample sizes. Note that the PLS found clear separation 
between the features in the four regions. Of particular 
note is that the features in the central regions for the 
two classes, small temporal drusen in the central region 
(smCC) and temporal concentrated drusen in the 
central region (tempCC) are well separated, as are the 
features represented by the ICs for the smOT and 
tempOT.  

Figure 5 uses a 6 x 6 sample size, which results in 
an encoding of a different feature scale by the ICA. 
Classification results remain unambiguous. Though at 
this small scale, the features between the two respective 
regions of the same phenotypes are indistinguishable. 
That is, small scale features in the central region and 
temporal region are very similar within a phenotype 
(see smCC versus smOT in Figure 5).  

 

5. Conclusions 
 

This study has shown that application of ICA can 
robustly detect and characterize features in fundus 
images that correspond to the phenotypes visually 
classified by the observer. In this example we have not 
determined whether the small central or predominantly 
temporal drusen phenotypes are enriched for any 
genetic or environmental factor, although one may be 
present.  The expert observer, SRR, defined the two 
sets of phenotypes based on his characterization of 
each fundus based on such visual features as size, 
distribution, location, concentration, etc. Without the 
need to develop an algorithm to explicitly mimic the 
expert observer, ICA extracts implicitly the 
mathematical features from each image to define the 
phenotype. 

  

 

Figure 2. a. Phenotype A is “temporally 
concentrated drusen.” b.  Phenotype B is “small 
distributed drusen.” These phenotypes were 
assigned by the SRR and independently analyzed.  

 
Figure 3 – Central and Temporal ICAs of Image 
2619 (Temporally Concentrated Drusen).   

67



 

This forms the basis for applying ICA and other 
computational features to the larger number of images 
and a broader set of phenotypes. 
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Figure 4 – The results of applying the partial 
least squares to the set of ICs produced from 
sampling each of the two ROIs (OT and CC) 
from the two phenotypes. Scale was 12x12 
pixels. Class separation is evident for the 
two phenotypes: sm = small distributed 
drusen, and temp = temporally concentrated 
d

 

Figure 5 – Same as Figure 6, except for a scale 
size of 6x6. 
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