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Abstract—This study explores the ability to reconstruct 
functional magnetic resonance imaging (fMRI) brain slices from 
a limited number of K-space samples.  We use compressed 
sensing methods to reconstruct brain imaging activity using 
different K-space sampling geometries. To determine the 
optimal sampling geometry, we compute the reconstruction 
error. Here, for each geometry, we also estimate the optimal 
weighting parameters for the total variation (TV) norm and L-2 
norm penalty functions.  Initial results show that the optimal 
sampling geometry varies significantly as a function of the 
required reduction in K-space sampling density (for 60% to 
90% reduction). Furthermore, the reconstructed fMRI slices 
can be used to accurately detect regions of neural activity from a 
largely reduced number of K-space samples. 

I. INTRODUCTION 
ITH the promise of near exact reconstruction of 
compressible signals from a small number of random 
projections, compressed sensing (CS) has promising 

applications in sparse signal acquisition, reconstruction, and 
encoding. In the traditional sense of digital image acquisition, 
the quality of data reconstructions that can be achieved by a 
specific sensor or modality depends on the total number of 
data elements it can capture.  Image compression algorithms 
in use today typically operate under the assumption that the 
user has possession of the full-resolution set of data, which is 
then encoded using a compression scheme.  The reduced 
representation of the data is then transmitted or stored, and 
eventually reconstructed using a-priori knowledge about the 
compression scheme.    
 Viewing CS in the context of data compression, it can be 
thought of a method of obtaining information from data that 
has, by its method of collection, already been compressed. 
Along these lines, this work explores the effects of reduced 
K-space sampling of an MRI scanner and its effects on fMRI 
data analysis. 
 CS theory requires that the data that is sampled is both 
represented within a sparse basis, and that the samples that 
are collected exhibit a suitable level of incoherence, which 
can be achieved by transforming the MRI collected data into 

a sparse basis (in this case, using the Wavelet transform) and 
under sampling in a way that the samples are incoherent with 
respect to the sparsifying domain [1].  The second 
requirement, the incoherence of under-sampling artifacts, 
will depend on how the subset of frequency domain 
(K-space) is sampled. While some of the most astonishing 
results of CS assume that sampling is completely random 
within K-space, such sampling on an actual MRI system 
tends to be impractical. Due to the hardware and 
physiological constraints inherent to MRI, sampling 
trajectories must follow relatively smooth lines and curves 
[1].   For simplicity, we have constrained our sampling 
geometries to ones based on squares, covering all possible 
directions with a simple scanning geometry on a Cartesian 
coordinate system. 
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 Previous studies have shown that an approximation to the 
gradient using finite differencing is well suited for 
two-dimensional data recovery [2].  This approximation is 
referred to as the total variation norm, which can be defined 
as  
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In (1),  and ),1(),(1 yxmyxmmD

)1,(),(2 yxmyxmmD  are the finite differences of X  
in both of its dimensions.  The addition of a total variation 
term to the objective function solving an L-1 norm 
minimization problem has shown to improve image 
reconstruction [3].   

fMRI is used to identify localized regions of activity within 
the brain by measuring the physiological changes due to the 
hemodynamic response to neuron activation.  Since the 
process of blood oxygenation is constrained by physiology as 
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Fig. 1. The depiction of the sequence of steps required to detect brain 
activity. Two MRI images are acquired, one in which the subject is at rest, 
and another where the subject is performing a specific action. These two 
images are single slices of two separate brain scans. The images are both 
typically smoothed with a Gaussian kernel. The difference of the smoothed 
images reveals which spatial regions of the brain are active.
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well as the time required for the brain to process specified 
tasks, fMRI data tends to be more time consuming than 
spatial MRI imaging since the data consists of 3-D data sets 
that are being collected at different time points. A sample 
fMRI difference image is depicted in Fig. 1. We hope to 
explore the limitations of a CS solution on fMRI data 
collections, and our hope is that we can find a suitable 
reduction of K-space samples that provide sufficient fidelity 
in the difference image (task versus rest).   

Our approach focuses on expanding the work described in 
[3], which developed K-space sampling techniques that 
focused on ensuring incoherence.  We intend to present a set 
of sampling geometries that are intended to reduce the 
required number of samples and the complexity of the 
sampled geometry to reduce acquisition time.  Adding (1) to 
an objective function that minimizes the L-1 norm of a 
transform operator, constraining the solution with an L-2 
norm, and applying the optimal transform and TV penalties, 
the solution to our objective problem allows for improved 
reconstruction with less sophisticated geometries. 

II. THEORETICAL BACKGROUND 

A. TV-Norm Reconstruction for Image Reconstruction 
TV-Norm minimization is the key component to the problem 
of recovering data from a sparse basis. Compressed sensing 
lends itself well to image reconstruction from the Fourier, 
Wavelet, or other image transformations leading to sparse 
representations. A well-written overview of the 
reconstruction process can be found in [4], while the bulk of 
the theoretical aspects of this approach can be found in [5]. 

It has been shown that if the stated two conditions hold 
(sparsity and incoherence between samples), then with high 
probability the unknown signal components can be fully 
reconstructed [2,4,5]. 

B. Sparse MRI reconstruction 
An overview of the possibilities CS lends to MRI image 

reconstruction can be found in [1]. Data samples generated by 
an MRI scanner are encoded using spatial-frequency 
encoding. The collected samples are transformed into an 
image by simply applying the two-dimensional inverse Fast 
Fourier Transform (FFT). 

The sub-set of samples obtained from sparse data 
representations should also exhibit incoherence when 
reconstructed using a linear reconstruction method. This 
ensures that the non-linear reconstruction methods can detect 
the largest signal components during iterative reconstruction. 
Detailed analyses of various sampling methods designed to 
ensure incoherence between samples are described in [6-8].  
Results from incoherent under-sampling in K-space provide 
strong support of the CS theory of sparsity and incoherence, 
but are often times impractical. In addition, MRI images tend 
to consist of pixels with a large dynamic range and 
considerable high-frequency components.  The TV-Norm is 
an excellent candidate for reconstructing piece-wise constant 
signals, but tends to over-smooth the resulting pixel data.  

Therefore, a constraint is placed on (1), and the problem to 
solve becomes 

2

1

..

min

yxts

x

u

. (2) 

Here, x is the reconstructed image, y are the measured 
K-space samples, and  maintains a bound on the accuracy of 
the reconstructed data. The transformations,  and Fu, 
represent the linear operator that transforms from pixel 
(reconstructed image) representation to the chosen sparse 
representation and the Fourier transform that under-samples 
the Fourier space data, respectively. Again, the objective 
function minimizes the TV-Norm. The L-2 norm in the 
constraint ensures that the solutions to the TV-Norm are 
consistent with the acquired data. 

C. TV and Wavelet Transform Cost Parameters Selection 
When considering sparse image reconstruction of data that 

is not piece-wise constant, the TV-Norm tends to 
underperform on its own. It has been shown that it is 
advantageous to include a TV penalty on the objective 
function in (2) [10]. Including this term leads to the 
optimization problem that is being solved in this work: 
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The TV penalty, , as well as a transform penalty, , 
allow for a compromise between the opposing effects of L-1 
and L-2 norms in the objective function and the constraint. 

The problem explored in this work examines the effects of 
varying the TV and transform penalties on reconstructed 
images using (3). The intention is to explore the feasibility of 
(3) as a solution to reconstruct a resting brain image and an 
image that contains neural activity. A non-linear conjugate 
gradient and backtracking algorithm described in [11] was 
used in solving (3).  The fidelity of the CS reconstruction will 
be assessed based on the difference between the two images.  
It is this difference image that reveals to the observer which 
spatial regions within the brain are active. 

III. METHODS  

A. Selecting K-space Sampling Geometries 
The feasibility of being able to accurately collect samples 
over a restricted K-space geometry led us to constrain the 
geometries to three separate classes. These are geometries 
consisting of a square region centered at the center of 
K-space.  This class will be referred to as the “Centered Low 
Pass” (CLP) geometry. The second class is a combination of 
the CLP geometry and equidistant square patterns a single 
data sample wide and is referred to as the “Structured High 
Pass”   (SHP) geometry. The third geometry contains a CLP 
region and variably spaced square patterns outside of the CLP 
region.  This geometry is referred to as “Dyadic” (DY), and 
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its design is intended to sample high-frequency content at a 
varying amount based on how far the samples are from the 
center of K-space.  Samples with a closer proximity to the 
K-space center will have a denser sampling pattern than those 
further displaced from the K-space center.     

By varying the extent of the CLP class coverage and the 
spacing between the structured square patterns in the SHP 
class we were able to produce 81 unique geometries for 
analysis. Eight unique DY geometries were generated by 
varying the size of the CLP region, for a total of 89 
geometries. Additionally, K-space sampling geometries were 
generated using uniform random sampling with various 
sample reduction rates ranging from 60%-95% sample 
reductions, as well as K-space sampling geometries that were 
generated using a sampling from a probability density 
function [9], bringing the total number of geometries to 103. 
These latter two methods ensure high incoherence among 
samples in the sparse basis, but would require more 
programming time during acquisitions. 
 

B. Calculating Penalty Coefficients 
For each of the above geometries, we employed the 
Nelder-Mead simplex algorithm to solve a two-dimensional 
unconstrained nonlinear minimization problem: 
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In (4), x  is the solution to the non-linear convex problem in 
(3) and x is the spatial image obtained from the entire K-space 
samples.  The  and  values are calculated using the 

search method described for a given geometry until a 
minimum the RMSE between the original, unsmoothed image 
and the result of (3) is found. 

C. Detection of Neural Activity 
Neural activity in fMRI is typically detected by first 
smoothing the reconstructed active and at rest brain images 
with an 8mm half-power/half-bandwidth Gaussian kernel. 
The difference between the smoothed images results in a 
difference image where localized regions of activity in the 
brain can be segmented using a threshold followed by 
morphological processing. The threshold is selected as two 
standard deviations of the difference image data. The 
thresholding operation generates a noisy binary segmentation 
image. We use a morphological open operation (with a ‘+’ 
structural element) to smooth the binary segmentation image.  
 The reconstructed imagery, which is the solution to (3) can 
also be used for analysis, if smoothing is not desired.  
Smoothing is used in the detection step because it provides 
leniency in the final detection error calculation. 

IV. RESULTS 

A. Optimal TV Coefficients using Nelder-Mead Search 
TV minimization parameter coefficients were found that can 
be considered “optimal” in terms of producing a 
reconstructed image which minimized the RMSE between the 
result of (3) and the original brain images.  
 The  and  values were initially set to zero, which 
corresponds with the Fourier Transform solution of the 
reduced K-space data. Values corresponding with the 
minimum objective function in (4) ranged between -0.01 and 
0.01 depending on the geometry being searched. The 
Nelder-Mead approach resulted in a unique minimum RSME 
solution for each of the 103 geometries studied. Figure 2 
depicts the TV coefficients plotted against search iteration  
for a select geometry from the CLP, SHP, DY, and PDF 
classes.  Poor performance by the Uniform class will be 
discussed further in the next section. All geometries exhibited 
convergence, albeit at various rates. 

 

 Future work is possible to further study the convergence of 
this method, as we make no claims as to whether the minima 
are global.  

B. PSNR values of Searched Geometries 
Peak Signal to Noise Ratio (PSNR) values were calculated 
using the minimized RMSE values produced by solving (4).   
Of the 103 geometries studied 41 exhibited PNR ratios 
greater than 30 dB, compared to just four geometries when no 
was performed.  
  One must also consider how much data reduction is 
achieved, as well as how well the missing K-space data is 
estimated. Therefore, it is noteworthy that 13 geometries 
having PSNR values over 30 dB and represented a K-space 
data reduction of 80% or greater.  Figure 3 depicts the PSNR 
values sorted by the percent of data sampled.  The best 
geometries in terms of PSNR from each of the four classes 
(CLP, SHP, DY, and PDF) are shown in Figure 4. Uniform 

Fig. 2. These plots represent the (top) and (bottom) 
parameters at each Nelder-Mead search iteration for four selected 
geometries.  Each plot converged to values that maximized the PSNR 
of the reconstructed image within 40 iterations. 
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Fig. 3. Image reconstruction quality versus the percentage of K-space 
samples. We are interested in quality reconstructions (PSNR>30dB).  
The number of geometries that provide quality reconstructions 
increased from three geometries to forty-one geometries after 
reconstruction. The reconstructed PSNR values are denoted by the light 
grey plot markers, while the black markers represent no reconstruction. 

sampling resulted in an average PSNR value of 10.96 dB, and 
will not be considered as a candidate. This result points to the 
need for sampling heavily in the DC portion of K-space, as is 
commonly done in image compression methods. 
 For a 60% reduction in the number of K-space data, the 
best PSNR value (41.39 dB) was achieved using the PDF 
geometries.  Use of a Gibbs sampler to ensure high 
incoherence between samples ensures the geometry plays to 
the strengths of CS theory.   
 The other three geometries in Figure 4 pose special interest 
to this study, as they are easy to implement in an MRI 
scanner.  The best CLP geometry in Figure 6 passed the 
K-space samples in a support of 50% of the samples in the 
phase-encoded dimension, and 50% of the samples in the 
frequency-encoded dimension.   
 Of the SHP geometry class, the best PSNR was achieved 
using the CLP geometry described above and square 
structures spaced 4 samples apart over the remaining K-space 
support. The best DY geometry had a central DC region 
covering 43% of K-space.  The DC region encapsulated 14 
samples in the phase-encoded dimension and 14 samples in 

the frequency-encoded dimension as well as square patterns 
spaced 2, 4 and 6 samples apart. 

TABLE I 

 For different percentages of K-space sample reduction, we 
provide a summary in Table I. From Table I, we can see how 
different types of geometries dominated over different data 
reduction rates. 

C.  Segmentation of Neural Activity 
Using the optimal TV reconstruction coefficients, all 
geometries were applied to two separate fMRI data sets.  
 An example of a brain activity map is given in Figure 5.  
Segmented brain activity images were generated for each of 
the sampling geometries.  The average error between the 
original segmented difference image and the reconstructed 
segmented difference image for each class of geometry are 
shown in Table II.  
 The most consistent reconstructions are obtained using 
geometries that have large low frequency regions. CLP 
geometries that covered less than 1/6 of the phase and 
frequency encoded dimensions were much less effective. 
 When considering all of these experiments, the geometry 
that provided a reconstruction PSNR greater than 30dB with a 
93% reduction of K-space samples emphasize that data 
reduction may be the most telling of this study. This was 
achieved by CLP geometry with a low frequency sampling 
support of 25% in both the phase and frequency encoded 
dimensions.  It is depicted left-most image in Figure 6. 
 The CS techniques resulted in a segmentation error of 
3.125% for the first image set and 2.03% for the second 
image set.  The sampling geometry, and reconstructed 
difference images, along with the original difference images 
for comparison, are also shown in Figure 6.  The figure 
reveals that there is some segmentation error when the same 

BEST PSNR IN RANGE OF K-SPACE REDUCTION 

Geometry Description 
K-Space 
Sample 

Reduction 
PSNR 

CLP spanning ¼ of K-space in each 
dimension

> 90 % 32.17 dB 

CLP spanning 1/3 of K-space in each 
dimension

80-90% 36.70 dB 

SHP with CLP spanning 1/2 of K-space in 
each dimension and structures spaced by 12 
samples

70-80% 38.92 dB 

PDF with 60% reduction of K-space 
samples.

60-70% 41.32dB 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

 

 
Fig. 4. A comparative example of the best sampling geometries for a 
minimum K-sample reduction of 60% or more. (a) PDF geometry class 
and provides a 60% reduction of K-space data, with a PSNR of 41.39 
dB.   Image (b) represents the CLP geometry and provides a 73% 
reduction of K-space samples, with a PSNR of 38.91 dB.  Image (c) 
represents the SHP geometry class and provides a 59% reduction of 
K-space data, with a PSNR of 40.81 dB.  Image (d) represents the DY 
geometry class and provides a 67% reduction of K-space data, with a 
PSNR of 38.8 dB.  

 
Fig. 5.  An example of a brain activity map.  The segmented image on 
the right is obtained by thresholding the image on the left using a 
threshold of 2 standard deviations of the image data.  Binary 
morphology is then applied to remove any non-contiguous regions. 
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Original Difference Set 1 

  
TV Difference, Set 1 

 

 
 

 

Segmented Image, Set 1 TV Segmented, Set 1 

 
Segmented Image, Set 2 

  
Original Difference Set 2 

CLP Geometry, ¼ extend 
in Phase-Encoded and 
Frequency-Encoded 

Dimensions 

TV Difference, Set 2 
 

TV Segmented, Set 2 
Fig. 6.  The mask used in these reconstructions is from the CLP geometry class, and represents a 93% reduction in K-space data.  The top row represents the 
first data set.  The bottom row represents the second data set.  The smoothed difference image and segmented image of the entire K-space data are shown 
first, while the TV reconstructed K-space results in the third and fourth columns.  The error percentage for the first data set was 3.1%.  The error percentage 
for the second data set was 2.32%. 

threshold is set for 2-sigma of the difference image.  
Adjusting these threshold values can lower the segmentation 
error between the original difference images and the TV 
difference images, but only at the risk of not detecting all the 
pixels in which brain activity is present.   

V. CONCLUSION 
The intention of this study was to explore the feasibility of 

using CS reconstruction methods on low resolution fMRI 
data sets. Various sampling geometries were developed and 
explored. Adjustment of the TV coefficients resulted in 
boosted PSNR values, with many geometries having PSNR 
values over 30dB when the optimal TV coefficients were 
found. Difference image calculation and segmentation 
resulted in low (< 5%) error when segmenting the difference 
images of smoothed reconstructed brain slice images.  Further 
work in this research area can seek to find better sampling 
geometries. Additional data sets can help determine whether 

or not these methods can be applied more generally. 
 The promising results revealed by this study have shown 

that CS methods may be useful in reducing the amount of data 
required for fMRI data collection and analysis. 
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3.90% 
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SHP (CLP =1/6) 194.56 4.750% 
SHP (CLP =1/8) 202.38 4.94% 
SHP (CLP = 1/3) 241.44 5.89% 
PDF 247.43 6.04% 
SHP (CLP = 1/10) 262.94 6.42% 
SHP (CLP =1/12) 286.45 6.99% 
SHP (CLP =1/16) 302.38 7.38% 
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The fraction associated with each SHP geometry denotes the extend of the 
samples included in the DC region of the geometry in the phase-encoded and 
the frequency-encoded dimensions.  E.g. 1/10 denotes that the CLP portion of 
the geometry includes 1/10 of samples along the phase-encoded dimension 
and 1/10 of the samples along the frequency-encoded dimension.  The equally 
spaced square patterns create unique geometries with a constant DC support. 
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