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Abstract— We present a dynamic computing platform that allows 
for rapid prototyping of image and video processing applications 
systems. Here, an Ethernet MAC is used to stream video in and 
out of the FPGA. The output video is also sent to a video port for 
display. The system features a simple way to specify the dynamic 
video processing modules that are going to be multiplexed in 
time. The dynamic control is user-specified in the embedded 
processor’s software routine. We test the platform on two video 
processing applications, where the system’s overall performance 
is evaluated as a function of the reconfiguration rate. 

Keywords: FPGA, dynamic partial reconfiguration, video 
processing, hardware. 

I. INTRODUCTION 

In image and video processing applications, it is often 
required to have many processing cores and to switch between 
them in order to accomplish a given task. When it comes to 
static hardware implementations, all these systems need to be 
present in the circuit. This might become an intractable 
problem due to size constraints. In addition, most of the static 
hardware components are not needed at every time instance. 
Thus, even if there are sufficient resources to implement the 
static components, the approach is power inefficient. 

Dynamic Partial Reconfiguration (DPR) addresses the 
aforementioned problems by time-multiplexing FPGA 
resources. The efficiency of DPR relies on the fact that it does 
not require the device to be turned off and that only a portion of 
the device is reconfigured, which saves time and power with 
respect to full static reconfiguration. If the system becomes 
idle, we can save power by switching off a portion of the 
device. Thus, it allows us to efficiently allocate resources as 
needed by particular applications [1]. 

The use of dynamic reconfiguration for image processing 
systems has been reported in [2] and [3]. In [2], the authors 
showed the advantage of reconfiguring JPEG-hardware blocks 
as needed, yielding significant area reductions at little 
performance overhead. In [3], it was shown that the DSP 
blocks can be dynamically reconfigured at a very coarse level. 
However, most of this early research is focused on 
demonstrating the benefits of dynamic reconfiguration applied 
to their specific applications. Our focus consists of developing 
a more general platform that allows new IP video processing 
cores to be easily loaded into the FPGA at run-time. The 
embedded processor’s software routine is assumed to be in 

charge of handling the data I/O and performing DPR in order to 
accomplish a specific task. 

Our approach allows for rapid incorporation of a new core, 
by creating its partial bitstream ready to be loaded to the 
FPGA. This process provides a simplified interface, thereby 
sparing us from the standard, somewhat cumbersome, dynamic 
partial reconfiguration process. It also provides a reliable 
communication interface with the PC for testing purposes, and 
a VGA controller for visual verification. 

The rest of the paper is organized as follows: Section II 
describes the system architecture and its operation. Section III 
explains how we perform DPR in the system. Section IV 
provides results in terms of resource utilization and throughput 
as a function of the reconfiguration rate. Section V summarizes 
the paper and discusses further work. 

II. SYSTEM DESCRIPTION 

A. Block diagram description 

Fig. 1 shows the system block diagram. The PowerPC 
(PPC) processor and the coprocessor are linked by the high 
speed Fast Simplex Link Bus [4]. The partial reconfiguration 
region (PRR) holds a specific IP core and it is dynamically 
reconfigured via the internal configuration access port (ICAP) 
driven by the ICAP controller core [5]. The DDRRAM stores 
volatile data at run-time, e.g.: input images, processed images, 
and partial bitstreams. SystemACE [6] reads a Compact Flash 
(CF) Card that stores the partial bitstreams at power up. The 
Ethernet core provides reliable communication with a PC, and 
allows us to read new partial bitstreams or new input frames, 
and write processed frames back to the PC. The input or 
processed images can be displayed by the VGA core. 

B. Dynamic Module operation 

Fig. 2 depicts the coprocessor in more detail. We have the 
following components: the dynamic module (PRR), the 2 FSL 
FIFOs, the coprocessor’s static region, and the Bus Macros, 
that divide the static region from the dynamic region. 

The dynamic module receives and sends 32-bit words via 
the FSL bus. Due to the FIFO-like nature of the FSL bus, the 
PPC processor sends a data stream to FIFOw to be grabbed by 
the PRR that in turn writes an output data stream on FIFOr to 
be retrieved by the PPC processor. We optimize the FSL bus 
usage by writing a large block of data on both FIFOw and 
FIFOr. The PRR writes data on FIFOr in a pipelined fashion. 

412978-1-4244-5827-1/09/$26.00 ©2009 IEEE Asilomar 2009



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After reading all data in FIFOr, the PPC writes another 
large block of data on FIFOw, i.e. the PPC is busy only when 
reading/writing each large data block. In addition, the dynamic 
module starts reading the next available block of data on 
FIFOw right after writing a processed chunk of data on FIFOr. 
Each FIFO depth has been set to 32 words (32-bit words). 

The static region of the coprocessor consists of a Finite 
State Machine (FSM) that disables the Bus Macro outputs 
when performing DPR, since the PRR outputs can toggle 
erratically during that process [7].  

C. PowerPC routine 

The software flow diagram is shown in Fig. 3. It allows for 
the following actions: 

• Process video: It requires getting the video from the 
Ethernet link or from the CF card, streaming it 
through the current IP core, and sending it back to the 
PC via the Ethernet link. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Display video: It shows the current processed video 
stored in DDRRAM at a rate selected by the user. 

• Obtain bitstream from PC: It obtains a new partial 
bitstream through the Ethernet link and places it in 
DDRRAM. Then, the bitstream file can be stored on 
the CF card for its later use, or it can be immediately 
used to reconfigure the FPGA. 

• Reconfigure FPGA: If the bitstream is not already 
loaded in DDRRAM, we read a bitstream file from the 
CF card. Then, we just send it to the ICAP port. 

 
We indicate the number of frames as well as its size. The 

routine is meant to provide a template that features both 
flexibility and ease-of-use. 

D. Ethernet communication 

We use the Xilinx® Ethernet Lite core [8] that implements 
the Ethernet Link Layer. Low-level drivers are employed to 
develop the software routines both in the PC and PowerPC 
processors. It provides memory mapped direct I/O interface to 
a ‘transmit’ and ‘receive’ data dual port memory. The 
‘transmit’ memory holds data we are to send to the PC, and the 
‘receive’ memory holds data extracted from the last Ethernet 
packet. These memories are shown in Fig. 4.  
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Figure 1. System Block Diagram 
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Figure 2. Coprocessor in detail 
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The software routine developed for the embedded processor 

(PowerPC/Microblaze) provides high-level functions for: 
receiving a bitstream file from PC, sending data to PC, and 
controlling the communication. On the PC application, we are 
required to access the Ethernet link layer, which socket 
programming does not allow. As a result, a modification to the 
Microsoft NDIS 5.1 protocol driver is being used. The driver 
provides the basic functions to send and receive packets to the 
Network Interface Card. 

III. DYNAMIC PARTIAL RECONFIGURATION 

A. Controlling Bus Macro outputs 

To prevent the propagation of erratic signals from the 
dynamic module outputs, which may occur during DPR, we 
use the Bus Macro enable signal. When set to ‘1’, the circuit is 
in normal operation. When set to ‘0’, the Bus Macros outputs 
are zero, effectively blocking any signal coming from the 
dynamic module. The FSM shown in Fig. 2 is in charge of 
disabling the Bus Macros, and enabling them as soon as the 
DPR process is completed. 

B. Dynamic Partial Reconfiguration Setup 

All signals between the dynamic region and the static part 
are connected by pre-routed Bus Macros in order to lock the 
wiring [7]. To perform DPR, the partial bitstream has to be 
stored in DDRRAM, and then it is streamed to the ICAP port. 

C. Inclusion of a new IP core 

The only requirement for a new IP core is that it must 
interface to the FSL bus.  After the core has been successfully 
simulated, we need to obtain the netlist (.ngc file) by 
synthesizing the core in ISE®. Finally, we load the netlist into 
our current PlanAhead® project, where the new partial 
bitstream is created. 

 

TABLE  1.       HARDWARE UTILIZATION ON VIRTEX-4 
XC4VFX20-11FF672 

Module FF (%) Slice (%) LUT % 
PRR 686 4% 515 6% 728 4% 
Static Region 4007 23% 5414 63% 7724 45% 
Overall 4693 27% 5929 69% 8452 49% 

 
However, the dynamic module is always constrained by the 

amount of available FPGA fabric. This depends on the FPGA 
being utilized. As a rule of thumb, the area defined by the PRR 
has to be such that accounts for the system that takes up the 
maximum space. 

In the event that we do not need any circuit to operate, we 
can create a dummy IP core that does not sense any input and 
that keeps the output signals open. This process saves power by 
effectively switching off a portion of the FPGA. 

IV. RESULTS 

A. Platform testing scheme 

We use the ML405 Development board that houses a 
XC4VFX20-11FF672 Xilinx® Virtex-4 device. The PPC is 
clocked at 300 MHz and the peripherals run at 100 MHz. In 
order to improve performance, the DDRRAM memory space is 
cached. We tested our platform on applications: pixel-to-pixel 
processing and 2D separable filtering. We use a grayscale 40-
frame video with 640x480 pixels per frame. 

The pixel-to-pixel application has been described in [9]. 
The 2D separable filter consists of two 1D filters (built based 
on ideas presented in [10]) that dynamically commute in order 
to accomplish 2D filtering. In other words, only one 1D filter is 
present at a time in the FPGA. 

The following is a description of how we perform 
throughput measurements on each of the 2 applications: 

1) Pixel-to-pixel processing: Here, we modify the pixel 
processing function by DPR. The reconfiguration rate depends 
on the application and it can greatly vary. We test this circuit 
in terms of throughput vs. reconfiguration rate. 

2) 2D separable filtering: Here, we have to modify the 
core every time we process a frame, since we first filter the 
rows and then the columns. Thus, the reconfiguration rate is 
fixed to 2 reconfigurations per frame. 

B. Hardware resource utilization 

We have defined the reconfiguration area (PRR) to be of 
size 8 x 24 = 192 CLBs, with a bitsream size of 68000 bytes. 
This has shown to be enough for the two systems under test. 

Table 1 shows the hardware resource utilization of the 
static region, dynamic region, and the whole system. The static 
region includes the FSM shown in Fig. 2 and every peripheral 
controller shown in Fig. 1. In the case of the dynamic module, 
the results are for the 1D filter, which is the larger system. 

As it can be seen, the static region is the one that takes 
most of the FPGA fabric. The reason for this is the large size 
of the DDRRAM controller. 

C. Ethernet speed 

The Ethernet link we are using has a nominal speed of 100 
Mbps in full duplex configuration. We have measured the  
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TABLE 2.     RECONFIGURATION TIME FOR A 68KB BITSTREAM 

Scenario Reconfiguration 
Speed 

Reconfiguration 
Time 

1. Current 3.23 MB/s 21.05 ms 
2. Custom [10] 180 MB/s 0.37 ms 
3. Custom [11] 295.4 MB/s 0.23 ms 

4. Ideal 400 MB/s 0.17 ms 
 

TABLE 3.     THROUGHPUT (FPS) FOR 2D SEPARABLE FILTER 

Scenario Time to process a 
frame fps 

1. Current 63.1 ms 15.8479 
2. Custom [10] 21.74 ms 45.9982 
3. Custom [11] 21.46 ms 46.5983 

4. Ideal 21.34 ms 46.8604 
 
average transmission and reception speed of both video and 
bitstream to be 12Mbps. This is the speed at which we send 
and receive actual data (the Ethernet packet payload).  The 
speed reduction is due to the fact that the Xilinx® Ethernet 
Lite core can only hold one packet at a time, and as a result, 
we had to introduce waiting cycles between packets in the PC 
software routine. 

D. Reconfiguration time 

Table 2 shows the reconfiguration time in 4 scenarios. In 
our setup, called Scenario 1, we used the Virtex-4 Xilinx® 
ICAP core and measured the reconfiguration time to be 21.05 
ms, yielding a reconfiguration rate of 3.23 MB/s.  The details 
of this process are explained in [11]. 

We also consider improved reconfiguration rates based on a 
custom embedded controller [12] (Scenario 2). Similar results 
are reported in [13] (Scenario 3). The dramatic improvement in 
reconfiguration speed lies on the use of a custom ICAP 
controller, DMA access, burst transfers, etc. Scenario 4 is just 
the maximum theoretical throughput, which for Virtex 4 is 400 
MB/s [11]. Here, we note that for Scenarios 2, 3, and 4, we 
report synthetic performance results based on our measured 
static performance and reconfiguration speeds of Table 1. 

E. Throughput measurements 

By using time functions in the PowerPC software routine, 
time was measured from the moment we start streaming the 
input video from the DDRRAM until the processed video is 
written in the DDRRAM. 

We have performed throughput measurements for our two 
applications. We measure throughput in frames per second (1 
frame = 640x480 bytes). In addition, we define the 
reconfiguration rate as the number of processed pixels (or 
samples) before a new partial reconfiguration is performed. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1) Pixel-to-pixel Processing: Here, we processed 40 
frames. Between frames, we load a new partial bitstream at a 
certain rate. For each partial bitstream, a new pixel 
transformation is loaded. We report the average throughput 
over the 40 frames. Fig. 5 shows the fps against the 
reconfiguration rate (for all the reconfiguration scenarios). 

2)  2D separable filtering: As in the previous case, we 
processed 40 frames. The reconfiguration rate is fixed to two 
reconfigurations per frame (columns and rows), or 
2x640x480=614400 processed pixels before a new 
reconfiguration. Table 3 reports the throughput attained in all 
reconfiguration scenarios. 

 
We see that dynamic performance heavily depends on 

reconfiguration speed and input stream size. To offset the 
reconfiguration time overhead, we can increment the data 
stream (i.e. decrease the reconfiguration rate); however, the 
reconfiguration rate depends on the application. The best way 
to offset the reconfiguration time overhead is to use a better 
ICAP controller (Scenarios 2 and 3).  

F. Frame processing example 

As an example of how we can combine dynamic modules 
to create more complex systems, we have performed gamma 
correction (pixel processor) on a frame, followed by a Sobel 
filtering. Fig. 6 shows an example. 
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V. CONCLUSIONS AND FURTHER WORK 

A simplified dynamic computing platform has been 
presented. Two IP cores were successfully tested with 
encouraging results. We can even combine the IP cores, as 
shown in Fig. 6. If the system is going to remain idle, we can 
save power by turning off the dynamic module, as explained in 
SubSection III.C. 

We have demonstrated that Dynamic Partial 
Reconfiguration offers a key advantage for the development of 
complex systems, by allowing a small Virtex-4 FPGA device 
the ability to multiplex its resources in time, thereby avoiding 
the use of a larger FPGA or more FPGAs. 

Further work consists on improving the reconfiguration 
time by using a faster custom ICAP controller, demonstrated 
by Scenarios 2 and 3 in Fig. 5. 

On static performance, there is room for improvement: 
simulation runs show that the processor takes a long time 
writing and reading on the FSL bus. By using DMA and PLB 
burst transfers so as to stream data to the system at a faster rate, 
better performances can be achieved. 

On Ethernet communication, we can attain larger 
transmission speeds by using a custom Ethernet controller that 
can hold more than one Ethernet packet. We can also use the 
Virtex-4 FPGA Embedded Tri-Mode Ethernet MAC that can 
work at a nominal speed of 1Gbps. This hardwired core, 
however, is far more complex than the Xilinx® Ethernet Lite 
core and requires many other IP cores. 
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