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Abstract— Many DSP, image and video processing applications 
use Finite Impulse Response (FIR) filters as basic computing 
blocks. Our paper introduces an efficient dynamically 
reconfigurable FIR system that can adapt the number of filter 
coefficients, and their values, in real time. Here, dynamic 
reconfiguration is used to switch between different, pre-
computed, fixed-point realizations of different digital filters. 
Our platform relies on the use of Distributed Arithmetic 
blocks, mapped to the specific LUTs of the underlying FPGA. 
Dynamic reconfiguration of the coefficients is limited to 
changing a small number of relevant LUT contents, while 
leaving the rest of the architecture intact. We investigate the 
dynamic system throughput as a function of the dynamic 
reconfiguration rate. 

Keywords: FPGA, dynamic partial reconfiguration, 
distributed arithmetic, FIR filters, hardware. 

I. INTRODUCTION 
Over the last three decades, there have been a large 

number of static implementations of one dimensional digital 
filters, both in CMOS technology (e.g. [1]) and 
reconfigurable hardware (e.g. [2]). 

 Highly-efficient, multiplier-less, FIR filter 
implementations can be achieved using the Distributed 
Arithmetic (DA) technique [3]. This approach however, 
requires the coefficients to be fixed or hardwired in the filter 
implementation. 

This paper introduces an efficient dynamically 
reconfigurable platform for implementing fixed-point FIR 
filters using DA, whose coefficients can be dynamically 
changed at run-time. Dynamic Partial Reconfiguration 
(DPR) [4] is used to modify otherwise fixed filter 
coefficients at the expense of partial reconfiguration time 
overhead. The efficiency of DPR relies on the fact that it 
does not require the device to be turned off and that only a 
portion of the device is reconfigured, which saves time and 
power with respect to full static reconfiguration. 

The introduction of a dynamically reconfigurable 
platform allows us to re-use resources in real-time. A 
dynamic reconfiguration can be initiated from a desire to 
implement a new filter, based on power or resources 
considerations, or simply to implement new functionality. 
While we will not investigate such specific applications, we 
will investigate performance bounds based on the 
reconfiguration rate. We believe that these performance 

bounds can be used to understand a wide variety of possible 
future applications. 

Our proposed system is based on dynamically 
reconfiguring at the finest possible level, the LUTs that store 
the coefficients, with a small dynamic reconfiguration area. 
This approach of dynamically modifying LUT-based 
structures was also presented for a dynamically 
reconfigurable pixel processor in [5]. 

The rest of the paper is organized as follows: Section II 
describes the stand-alone FIR Filter architecture, its 
parameters, its operation, and its benefits. Section III 
describes the dynamic embedded system created with the 
FIR Filter as the core, details its operation, and explains how 
DPR is performed on this system. Section V provides results 
in terms of: 1) resource utilization, 2) accuracy of the fixed-
point FIR Filter implementation, and 3) throughput as a 
function of the reconfiguration rate. Section V summarizes 
the paper and discusses further work. 

II. A GENERAL DA FIR FILTER IMPLEMENTATION 
A high performance FIR implementation based on 

Distributed Arithmetic is described in this section. We 
encoded our approach directly in VHDL, so as to achieve a 
level of portability. When Xilinx ® FPGAs are employed, 
the code makes use of its specific LUT primitives. We will 
consider a dynamic adaptation of this system in Section III. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Generalized FIR DA Module 
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A. Description 
Fig.1 shows the FIR Filter module with its inputs, outputs 

and parameters. Signal ‘E’ controls the input validity. Fig. 2 
depicts two implementation schemes depending on the filter 
symmetry. For symmetric filters, we halve the number of 
effective taps by adding the corresponding samples [6]. Non-
symmetric filters are also considered, since they are useful in 
many instances, e.g. polyphase filter implementations. 

Here, N denotes the number of taps, NH represents the 
input values and coefficients bit width, L is the LUT input 
size, OP is the output truncation scheme (LSB Truncation 
then Saturation, LSB and MSB Truncation, and no 
Truncation), [NO NQ] denotes the output format: NO bits 
with NQ fractional bits, and the coefficients are given in a 
text file. We define ⎡ ⎤2NM = , 1NHsizeI +=  for symmetric 
filters, and NM = , NHsizeI =  for non-symmetric filters. 

The inputs/coefficients format is set at [NH NH-1], i.e. 
the values are restricted to [ )1,1− . As a result, the maximum 
number of output integer and fractional bits results: 

 
( ) ( )⎡ ⎤ ( )[ ]1NH211Nlog1NH2 2 −+++−  (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. FIR DA Implementation 
The Distributed Arithmetic technique rearranges the 

input sequence (be it x[n] or s[n]) into vectors of length M, 
which require an array of sizeI  M-input LUTs. This 
becomes prohibitively expensive when M is large. For 
efficient implementation, we divide the filter into LM  filter 
blocks [6], as illustrated in Fig. 2. Each filter block has L 
coefficients requiring sizeI  L-input LUTs (in Fig.2 each 
vector of size L goes to one L-input LUT). Table 1 illustrates 
the resource savings attained when performing division of 
the filter in filter blocks. The advantage of the FIR Filter 
block is that it allows for efficient routing while mapping the 
implementation to the specific LUT primitives found in an 
FPGA. As shown in [5], the approach is scalable in that it 
can be easily ported to different LUT sizes. 

 
 TABLE 1.       LUT SPACE COMPARISONS 

Total space required
1 Filter block of size M
LUTs have M inputs 

MsizeI 2×  words 

LM  filter blocks of size L 
LUTs have L inputs 

LM2sizeI L ××  words 

Figure 2.  High-performance DA implementation based on the underlying LUT input size (L) Non-symmetric Filter (left), Symmetric Filter (right) 
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From Table 1, we can see that if, for example, M = 16, 

L = 4, then 216 >> 24x16/4. Thus, dividing the filter into 
LM  filter blocks saves a great deal of hardware resources. 

It only needs an extra adder structure, (see Fig. 2), to add up 
all filter block outputs. 

Fig. 3 depicts the internal pipelined architecture of a 
Filter Block when SYMMETRY = YES. It consists of an L-
input LUT array, an adder tree, shifters, and registers. The 
number of register levels is given by the following formula: 

( )⎡ ⎤sizeIlogBlockFilterinlevelsregisterof# 2=  (2) 
 
Fig. 4 shows the structure of a L-input LUT (like those 

shown in Fig. 3). The word size (output bits) of each L-input 
LUT was computed as ( )⎡ ⎤LlogNHLO 2+= . It also shows its 
decomposition into LO L-to-1 LUTs, useful for efficient 
FPGA implementation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Xilinx® FPGA devices contain L-to-1 LUT primitives 

with L = 4 (Spartan-3, Virtex-II Pro, Virtex-4) and L = 6 
(Virtex-5). Thus, L = 4 or L = 6 are optimum values of 
choice. Moreover, as explained in [5] for Virtex-4, optimal 
LUT implementations can also be obtained for L = 5, 6, 7, 8. 

Fig. 5 depicts the internal pipelined architecture of the 
extra adder structure that adds up all the Filter Block outputs. 
A final output register is also shown. The number of Filter 
blocks is set to M/L = 4. The number of register levels of the 
adder structure is given by: 
  ( )⎡ ⎤LMlogStructureAdderFilterinlevelsregisterof# 2=  (3) 
 

Since we can quantize the LUT table values (i.e. the 
summations), rather than the coefficients, the FIR DA 
Implementation is slightly less sensitive to quantization noise 
than a normal implementation, with quantized coefficients. 

 
The FIR Filter architecture has an input-output delay of 

( )⎡ ⎤ ( )⎡ ⎤ 2LMlogsizeIlogLEVELS_REG 22 ++=  cycles, i.e. 
REG_LEVELS is the number of register levels between 
input and output. 

 
 

 
 
 
 
 
 
 
 
 

Figure 3. Filter Block architecture.  NH = 8 
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Figure 5. Final tree adder structure. M/L = 4
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III. DYNAMIC EMBEDDED FIR FILTER SYSTEM 
The FIR filter processor consists of the FIR Filter core 

and a state machine that provides interfacing with the Fast 
Simplex Link (FSL) bus. We process 4 bytes in parallel 
since the FSL bus width is 32 bits. The system can be 
dynamically reconfigured to perform an arbitrary filter 
response.  

A. System Architecture 
Fig. 6 shows the system block diagram. The dynamic 

FIR Core and the PowerPC (PPC) are linked by the high 
speed FSL Bus. The Partial Reconfiguration Region (PRR) 
holds the LUTs for every filter block and it is dynamically 
reconfigured via the internal configuration access port 
(ICAP), driven by the ICAP controller core. The SRAM 
stores volatile data needed at run-time, e.g.: input streams, 
processed streams and partial bitstreams. SystemACE reads 
a Compact Flash (CF) Card that stores the partial bitstreams 
and input streams at power-up. The processed streams are 
written back into the SRAM for throughput measurements. 
To verify correctness, the processed stream is stored in the 
CF Card for further evaluation. The UART interface 
provides a display interface for throughput measurements 
and current system status. 

Fig. 7 depicts the internal architecture of the FIR Filter 
processor. The PRR is made of ( ) sizeILM ×  L-to-1 LUTs; 
the PRR I/Os are registered as the reconfiguration 
guidelines advise [7]. 

A FIR Filter with N coefficients and NX input values 
can output a maximum of NX+N-1 values. The state 
machine provides three ways of selecting the output values: 

 
• We output the first NX values. This mode is useful 

for common 1D signals. 
• We output NX values in the range 

⎣ ⎦ ⎣ ⎦2NNX:12N ++ . This is the case when 
performing 2D separable convolution on images. 

• Streaming mode with infinite number of input 
samples, i.e. NX = ∞. 

 

  

 

 

 

 

 

 
 

 

B. FIR Filter  system operation 
The FIR Filter processor receives and sends 32 bits at a 

time via the FSL bus. Due to the FIFO-like nature of the 
FSL bus [8], the PPC processor sends a data stream to 
FIFOw to be grabbed by the FIR Filter processor that in turn 
writes an output data stream on FIFOr to be retrieved by the 
PPC processor. We optimize FSL bus usage by letting the 
PPC write a large block of data on FIFOw. The FIR Filter 
processor then processes the data and writes the results on 
FIFOr in a pipelined fashion. After reading all data in 
FIFOr, the PPC writes another large block of data on 
FIFOw, i.e. the PowerPC is busy only when reading/writing 
each large block of data. In addition, the FIR filter processor 
starts reading the next available block of data on FIFOw 
right after writing a processed chunk of data on FIFOr. Each 
FIFO depth has been set to 64 words (32-bit words). 

For throughput measurement purposes, the partial 
bitstreams and the input set of streams reside on SRAM. The 
streams are sent to the FIR Filter processor, and the output 
streams are written back to the SRAM. This process is 
repeated with different partial reconfiguration bitstreams 
loaded at specific rates, so as to get different filter responses. 

C. Dynamic Partial Reconfiguration Setup 
All signals between the dynamic region and the static 

part are connected by pre-routed Bus Macros in order to lock 
the wiring [7]. To perform DPR, the partial bitstreams are 
read from a CF card and stored in SRAM. When needed, 
they are written to the ICAP port. This fairly simple 
technique is explained in [9]. 

IV. RESULTS 

A. Stand-Alone FIR Filter core 
Fig. 8 shows hardware utilization and Fig. 9 shows the 

maximum frequency of operation. Both curves are a function 
of the number of taps and the output format, with OP = 0, L 
= 4, SYMMETRY = YES. We use the XC4VFX20-11FF672 
Xilinx® Virtex-4 device, with 8544 Slices. The architecture 
exhibits small resource utilization (worst case: 73% of the 
device) and frequencies of operation above 200 MHz.  
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Figure 7. FIR Filter processor in detail 
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An error analysis is performed for the same parameters. 

Fig. 10 shows the relative error curves for two cases (input 
stream = 1024 sinusoid samples). The error metric is: 

valueideal
outputFPGAvalueidealerrorlativeRe −=  (4) 

Fig. 10 shows the relative error to be below 5%. The 
peaks occur when FPGA values are zero and the ideal values 
are close to zero, resulting in a deceptive 100% error. 

B. Dynamic Embedded System 
The results are shown for: N = 32, NH = 8, [NO NQ] = 

[8 7], L = 4, OP = 0, SYMMETRY = YES (parameters 
defined in Subsection II.A). The Partial Reconfiguration 
Area is made of ( ) 36sizeILM =×  4-to-1 LUTs. It occupies 
a tightly packed area of 8x45=360 CLBs with a 48000 bytes 
bitstream. Also, the dynamic system is tested in the 1D 
signals mode, i.e. only the first NX outputs are considered. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The system is implemented in the ML405 Xilinx® 

Development Board that houses a XC4VFX20-11FF672 
Virtex-4 FPGA. The PPC is clocked at 300 MHz and the 
peripherals run at 100 MHz. 

 
1) Hardware resource utilization: Table 2 shows the 

hardware resource utilization of the static part, dynamic 
region and the whole system. The Static Region includes the 
FIR Filter processor and every other peripheral controller 
shown in Fig. 6. ST_FIR is the portion of the Static Region 
that implements only the FIR Filter Processor. 

2) FIR Filter Processor performance bounds: The 
maximum throughput of the FIR Filter processor is given by: 

Gbps8.0
ns10

bits8
cycle1
byte1Throughput.Max ===  (5) 

Note that since the system is pipelined, there is an initial 
latency that will become negligible over time. Actual 
throughput depends on many factors, e.g.: cache size, PPC 
instruction execution, and FSL usage. The maximum 
throughput can not be attained since the PPC can not read 
and write into the FIFOs at the same time. 

3) Reconfiguration Time: Table 3 shows the 
reconfiguration time for 3 scenarios. In our setup, called 
Scenario 1, we used the Xilinx® ICAP core and obtained a 
reconfiguration time of 25.96 ms yielding a reconfiguration 
speed of 3.23 MB/s. The reconfiguration time of Scenario 2 
is computed based on the speed results reported in [10]. The 
dramatic improvement in reconfiguration speed lies on the 
use of a custom ICAP controller, DMA access, and burst 
transfers. Scenario 3 is the maximum theoretical throughput, 
which for Virtex-4 is 400 MB/s [9]. 

 
TABLE  2.       HARDWARE UTILIZATION ON VIRTEX-4 

XC4VFX20-11FF672 
Module FF (%) Slice (%) LUT %
PRR 0 0% 948 11% 985 5%
Static Region 3326 19% 4399 51% 6307 36%

ST_FIR 1286 7% 815 9% 626 3%
Overall 3326 19% 5347 62% 7292 41%
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Figure 8.  Resources vs. number of coefficients and output 
fixed-point representation 

Figure 9.  Max. Frequency of operation (MHz)  vs. number of 
coefficients and output fixed-point representation

Figure 10. Relative error, N = 32. Two bit width cases 
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4) Throughput measurements: The system operation 

when measuring throughput was explained in Subsection 
III.B. By using timer functions in a software routine, time 
was measured from the moment we start reading the input 
stream from the SRAM until the processed stream is written 
in the SRAM. Out input streams consist of sinusoids. 

In order to evaluate the dynamic performance of the 
system, we use a stream of 102400 samples (1 sample = 8 
bits). The stream is processed a number of times (100 runs). 
Within the 100 runs, partial bitstreams are loaded at a 
specific rate. Each partial bitstream amounts to a different 
filter response. We report the average throughput over the 
100 runs. Reconfiguration rate is defined as the number of 
processed samples before a reconfiguration is performed. 
Throughput is defined in MSPS (Mega samples per second). 

Fig. 11 shows the dynamic performance over 100 runs. 
There are 3 curves that correspond to the 3 scenarios shown 
in Table 3. Static performance, i.e. no reconfiguration, 
corresponds to the value at which the 3 curves converge. For 
Scenario 1 (our actual measurements), the static performance 
resulted in 29.25 MSPS. At the maximum reconfiguration 
rate (1 reconfiguration every stream), the dynamic 
performance resulted in 3.51 MSPS. The other curves 
(Scenarios 2 and 3) provide performance bounds based on 
the static performance and reconfiguration speeds of Table 3. 

We see that dynamic performance heavily depends on 
reconfiguration speed and input stream size. Better 
reconfiguration speeds offset the reconfiguration time 
overhead.  (Scenarios 2 and 3). Longer data streams help to 
offset the reconfiguration time overhead. 

 
TABLE 3.       RECONFIGURATION TIME FOR A 84KB 

BITSTREAM 
Scenario Reconfiguration 

Speed 
Reconfiguration 

Time 
1. Current 3.23 MB/s 25.96 ms

2. Custom [10] 295.4 MB/s 0.284 ms
3. Ideal 400 MB/s 0.210 ms

V. CONCLUSIONS AND FURTHER WORK 
A high-performance and fully parameterizable FIR Filter 

has been presented. The small resource utilization is due to 
the fixed-nature of coefficients and the efficient use of the 
Distributed Arithmetic technique. The dynamic 
implementation was evaluated in terms of performance and 
resource consumption. It was shown that besides the obvious 
factor of the reconfiguration speed, the dynamic performance 
depends on the input stream size. In general, the dynamic 
performance is less sensitive to the effects of reconfiguration 
time overhead as the stream size increases. 

Further work consists on making the number of taps 
dynamic so as to control power dynamically. On dynamic 
performance, we can dramatically improve the 
reconfiguration time by using a faster ICAP controller, 
demonstrated by Scenario 2 [10] in Fig. 11. On static 
performance, there is room for improvement: simulation runs 
show that the processor takes a long time writing and reading 
on the FSL bus. By using DMA and PLB burst transfers so 
as to stream data to the system at a faster rate, better 
performances can be achieved. In future applications, the 
dynamic system can be used to switch between FIR filters 
based on power, performance, resources considerations. 
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Figure 11. Throughput vs. Reconfiguration Rate, N = 32 
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