
A Dynamically Reconfigurable Platform for Fixed-Point FIR Filters

Daniel Llamocca, Marios Pattichis
Electrical and Computer Engineering Department

The University of New Mexico
Albuquerque, NM, USA

dllamocca@ieee.org, pattichis@ece.unm.edu

G. Alonzo Vera
Microelectronics Research and Development Corp.

Albuquerque, NM, USA
alonzo@ieee.org

Abstract— Many DSP, image and video processing applications
use Finite Impulse Response (FIR) filters as basic computing
blocks. Our paper introduces an efficient dynamically
reconfigurable FIR system that can adapt the number of filter
coefficients, and their values, in real time. Here, dynamic
reconfiguration is used to switch between different, pre-
computed, fixed-point realizations of different digital filters.
Our platform relies on the use of Distributed Arithmetic
blocks, mapped to the specific LUTs of the underlying FPGA.
Dynamic reconfiguration of the coefficients is limited to
changing a small number of relevant LUT contents, while
leaving the rest of the architecture intact. We investigate the
dynamic system throughput as a function of the dynamic
reconfiguration rate.

Keywords: FPGA, dynamic partial reconfiguration,
distributed arithmetic, FIR filters, hardware.

I. INTRODUCTION
Over the last three decades, there have been a large

number of static implementations of one dimensional digital
filters, both in CMOS technology (e.g. [1]) and
reconfigurable hardware (e.g. [2]).

 Highly-efficient, multiplier-less, FIR filter
implementations can be achieved using the Distributed
Arithmetic (DA) technique [3]. This approach however,
requires the coefficients to be fixed or hardwired in the filter
implementation.

This paper introduces an efficient dynamically
reconfigurable platform for implementing fixed-point FIR
filters using DA, whose coefficients can be dynamically
changed at run-time. Dynamic Partial Reconfiguration
(DPR) [4] is used to modify otherwise fixed filter
coefficients at the expense of partial reconfiguration time
overhead. The efficiency of DPR relies on the fact that it
does not require the device to be turned off and that only a
portion of the device is reconfigured, which saves time and
power with respect to full static reconfiguration.

The introduction of a dynamically reconfigurable
platform allows us to re-use resources in real-time. A
dynamic reconfiguration can be initiated from a desire to
implement a new filter, based on power or resources
considerations, or simply to implement new functionality.
While we will not investigate such specific applications, we
will investigate performance bounds based on the
reconfiguration rate. We believe that these performance

bounds can be used to understand a wide variety of possible
future applications.

Our proposed system is based on dynamically
reconfiguring at the finest possible level, the LUTs that store
the coefficients, with a small dynamic reconfiguration area.
This approach of dynamically modifying LUT-based
structures was also presented for a dynamically
reconfigurable pixel processor in [5].

The rest of the paper is organized as follows: Section II
describes the stand-alone FIR Filter architecture, its
parameters, its operation, and its benefits. Section III
describes the dynamic embedded system created with the
FIR Filter as the core, details its operation, and explains how
DPR is performed on this system. Section V provides results
in terms of: 1) resource utilization, 2) accuracy of the fixed-
point FIR Filter implementation, and 3) throughput as a
function of the reconfiguration rate. Section V summarizes
the paper and discusses further work.

II. A GENERAL DA FIR FILTER IMPLEMENTATION
A high performance FIR implementation based on

Distributed Arithmetic is described in this section. We
encoded our approach directly in VHDL, so as to achieve a
level of portability. When Xilinx ® FPGAs are employed,
the code makes use of its specific LUT primitives. We will
consider a dynamic adaptation of this system in Section III.

Figure 1. Generalized FIR DA Module

FIR_DA
X_in NH

E

NO

N N
H

[N
O

 N
Q

]

O
P

SY
M

M
ET

R
Y

C
O

EF
FI

C
IE

N
TS

Y

L

2009 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3917-1/09 $26.00 © 2009 IEEE

DOI 10.1109/ReConFig.2009.43

332

A. Description
Fig.1 shows the FIR Filter module with its inputs, outputs

and parameters. Signal ‘E’ controls the input validity. Fig. 2
depicts two implementation schemes depending on the filter
symmetry. For symmetric filters, we halve the number of
effective taps by adding the corresponding samples [6]. Non-
symmetric filters are also considered, since they are useful in
many instances, e.g. polyphase filter implementations.

Here, N denotes the number of taps, NH represents the
input values and coefficients bit width, L is the LUT input
size, OP is the output truncation scheme (LSB Truncation
then Saturation, LSB and MSB Truncation, and no
Truncation), [NO NQ] denotes the output format: NO bits
with NQ fractional bits, and the coefficients are given in a
text file. We define ⎡ ⎤2NM = , 1NHsizeI += for symmetric
filters, and NM = , NHsizeI = for non-symmetric filters.

The inputs/coefficients format is set at [NH NH-1], i.e.
the values are restricted to [)1,1− . As a result, the maximum
number of output integer and fractional bits results:

() ()⎡ ⎤ ()[]1NH211Nlog1NH2 2 −+++− (1)

B. FIR DA Implementation
The Distributed Arithmetic technique rearranges the

input sequence (be it x[n] or s[n]) into vectors of length M,
which require an array of sizeI M-input LUTs. This
becomes prohibitively expensive when M is large. For
efficient implementation, we divide the filter into LM filter
blocks [6], as illustrated in Fig. 2. Each filter block has L
coefficients requiring sizeI L-input LUTs (in Fig.2 each
vector of size L goes to one L-input LUT). Table 1 illustrates
the resource savings attained when performing division of
the filter in filter blocks. The advantage of the FIR Filter
block is that it allows for efficient routing while mapping the
implementation to the specific LUT primitives found in an
FPGA. As shown in [5], the approach is scalable in that it
can be easily ported to different LUT sizes.

 TABLE 1. LUT SPACE COMPARISONS

Total space required
1 Filter block of size M
LUTs have M inputs

MsizeI 2× words

LM filter blocks of size L
LUTs have L inputs

LM2sizeI L ×× words

Figure 2. High-performance DA implementation based on the underlying LUT input size (L) Non-symmetric Filter (left), Symmetric Filter (right)

EX_in B

x[0] x[1] x[N-1]

B

x[N-2]

B B B

x[0] :

x[L-1] :

x1xB-1

Y

xB-1
L

x0

Filter
Block

0

+

B = NH

xB-1[0] ... x1[0] x0[0]

xB-1[L-1] x1[L-1] x0[L-1]...

E E E

x0
L

x[L] :

x[2L-1] :

x1xB-1

xB-1
L

x0

xB-1[L] ... x1[L] x0[L]

xB-1[2L-1] x1[2L-1] x0[2L-1]... x0
L

x[N-L] :

x[N-1] :

x1xB-1

xB-1
L

x0

xB-1[N-L] ... x1[N-L] x0[N-L]

xB-1[N-1] x1[N-1] x0[N-1]... x0
L

Filter
Block

1

Filter
Block
N/L
-1

X_in

x[N-1]

x[0] x[M-2] x[
M

-1
]

x[M]x[N-2]

x[1]B

s[0] s[1] s[M-1]

only when
N is even

B+1 B+1 B+1

B = NH

E E E E

EEE E

s[0] :

s[L-1] :

s1sB

Y

sB
L

s0

Filter
Block

0

+

sB[0] ... s1[0] s0[0]

sB[L-1] s1[L-1] s0[L-1]... s0
L

s[L] :

s[2L-1] :

s1sB

sB
L

s0

Filter
Block

1

sB[L] ... s1[L] s0[L]

sB[2L-1] s1[2L-1] s0[2L-1]... s0
L

s[M-L] :

s[M-1] :

s1sB

sB
L

s0

Filter
Block
M/L
-1

sB[M-L] ... s1[M-L] s0[M-L]

sB[M-1] s1[M-1] s0[M-1]... s0
L

333

From Table 1, we can see that if, for example, M = 16,

L = 4, then 216 >> 24x16/4. Thus, dividing the filter into
LM filter blocks saves a great deal of hardware resources.

It only needs an extra adder structure, (see Fig. 2), to add up
all filter block outputs.

Fig. 3 depicts the internal pipelined architecture of a
Filter Block when SYMMETRY = YES. It consists of an L-
input LUT array, an adder tree, shifters, and registers. The
number of register levels is given by the following formula:

()⎡ ⎤sizeIlogBlockFilterinlevelsregisterof# 2= (2)

Fig. 4 shows the structure of a L-input LUT (like those

shown in Fig. 3). The word size (output bits) of each L-input
LUT was computed as ()⎡ ⎤LlogNHLO 2+= . It also shows its
decomposition into LO L-to-1 LUTs, useful for efficient
FPGA implementation.

Xilinx® FPGA devices contain L-to-1 LUT primitives

with L = 4 (Spartan-3, Virtex-II Pro, Virtex-4) and L = 6
(Virtex-5). Thus, L = 4 or L = 6 are optimum values of
choice. Moreover, as explained in [5] for Virtex-4, optimal
LUT implementations can also be obtained for L = 5, 6, 7, 8.

Fig. 5 depicts the internal pipelined architecture of the
extra adder structure that adds up all the Filter Block outputs.
A final output register is also shown. The number of Filter
blocks is set to M/L = 4. The number of register levels of the
adder structure is given by:
 ()⎡ ⎤LMlogStructureAdderFilterinlevelsregisterof# 2= (3)

Since we can quantize the LUT table values (i.e. the
summations), rather than the coefficients, the FIR DA
Implementation is slightly less sensitive to quantization noise
than a normal implementation, with quantized coefficients.

The FIR Filter architecture has an input-output delay of

()⎡ ⎤ ()⎡ ⎤ 2LMlogsizeIlogLEVELS_REG 22 ++= cycles, i.e.
REG_LEVELS is the number of register levels between
input and output.

Figure 3. Filter Block architecture. NH = 8

sB
L

Filter
Block

s0
L

sB
2L-w ord

LUT
L

s0
2L-w ord

LUT
L

-2B

20 +

ACTUAL IMPLEMENTATION

LUT LUT LUT LUT LUT LUT LUT LUT LUT

s8 s7 s6 s5 s4 s3 s2 s1 s0

++++

022
022

022
022

+

122
122

+

+

222

+

322

LL L L L L L L L

Figure 4. Decomposition of a L-to-LO LUTs into LO L-to-1 LUTs

Figure 5. Final tree adder structure. M/L = 4

LLUT_in LUT_out

2L-1

0
1

LO

bLO-1 b1 b0

LUT
L-to-1

LUT
L-to-1

LUT
L-to-1

L
LUT_in LUT_out

LO

LUT
L-to-LO

bLO-1

b1

b0

L

L

L

⎡ ⎤LlogNHLO 2+=

Filter
Block 0

Filter
Block 1

Filter
Block 2

Filter
Block 3

+

+

+ Y

output register

FILTER ADDER STRUCTURE

334

III. DYNAMIC EMBEDDED FIR FILTER SYSTEM
The FIR filter processor consists of the FIR Filter core

and a state machine that provides interfacing with the Fast
Simplex Link (FSL) bus. We process 4 bytes in parallel
since the FSL bus width is 32 bits. The system can be
dynamically reconfigured to perform an arbitrary filter
response.

A. System Architecture
Fig. 6 shows the system block diagram. The dynamic

FIR Core and the PowerPC (PPC) are linked by the high
speed FSL Bus. The Partial Reconfiguration Region (PRR)
holds the LUTs for every filter block and it is dynamically
reconfigured via the internal configuration access port
(ICAP), driven by the ICAP controller core. The SRAM
stores volatile data needed at run-time, e.g.: input streams,
processed streams and partial bitstreams. SystemACE reads
a Compact Flash (CF) Card that stores the partial bitstreams
and input streams at power-up. The processed streams are
written back into the SRAM for throughput measurements.
To verify correctness, the processed stream is stored in the
CF Card for further evaluation. The UART interface
provides a display interface for throughput measurements
and current system status.

Fig. 7 depicts the internal architecture of the FIR Filter
processor. The PRR is made of () sizeILM × L-to-1 LUTs;
the PRR I/Os are registered as the reconfiguration
guidelines advise [7].

A FIR Filter with N coefficients and NX input values
can output a maximum of NX+N-1 values. The state
machine provides three ways of selecting the output values:

• We output the first NX values. This mode is useful

for common 1D signals.
• We output NX values in the range

⎣ ⎦ ⎣ ⎦2NNX:12N ++ . This is the case when
performing 2D separable convolution on images.

• Streaming mode with infinite number of input
samples, i.e. NX = ∞.

B. FIR Filter system operation
The FIR Filter processor receives and sends 32 bits at a

time via the FSL bus. Due to the FIFO-like nature of the
FSL bus [8], the PPC processor sends a data stream to
FIFOw to be grabbed by the FIR Filter processor that in turn
writes an output data stream on FIFOr to be retrieved by the
PPC processor. We optimize FSL bus usage by letting the
PPC write a large block of data on FIFOw. The FIR Filter
processor then processes the data and writes the results on
FIFOr in a pipelined fashion. After reading all data in
FIFOr, the PPC writes another large block of data on
FIFOw, i.e. the PowerPC is busy only when reading/writing
each large block of data. In addition, the FIR filter processor
starts reading the next available block of data on FIFOw
right after writing a processed chunk of data on FIFOr. Each
FIFO depth has been set to 64 words (32-bit words).

For throughput measurement purposes, the partial
bitstreams and the input set of streams reside on SRAM. The
streams are sent to the FIR Filter processor, and the output
streams are written back to the SRAM. This process is
repeated with different partial reconfiguration bitstreams
loaded at specific rates, so as to get different filter responses.

C. Dynamic Partial Reconfiguration Setup
All signals between the dynamic region and the static

part are connected by pre-routed Bus Macros in order to lock
the wiring [7]. To perform DPR, the partial bitstreams are
read from a CF card and stored in SRAM. When needed,
they are written to the ICAP port. This fairly simple
technique is explained in [9].

IV. RESULTS

A. Stand-Alone FIR Filter core
Fig. 8 shows hardware utilization and Fig. 9 shows the

maximum frequency of operation. Both curves are a function
of the number of taps and the output format, with OP = 0, L
= 4, SYMMETRY = YES. We use the XC4VFX20-11FF672
Xilinx® Virtex-4 device, with 8544 Slices. The architecture
exhibits small resource utilization (worst case: 73% of the
device) and frequencies of operation above 200 MHz.

PPC

PLB

System

ACE
UART

SRAM

1MB

RS232

ICAP

core

control

unit
PRR

FiR Filter processor

FSL

CF

card

ICAP

port

Figure 6. System Block Diagram

Figure 7. FIR Filter processor in detail

FS
L_

S_
Ex

is
ts

FSL Slave

FS
L_

S_
D

at
a

FS
L_

S_
R

ea
d

FIFOw
...

FS
L_

M
_D

at
a

FS
L_

M
_W

rit
e

FSL Master

FS
L_

M
_F

ul
l

FIFOr
...

32

32

X_in

8

E
8 Y

FIR Filter

LUT
L-to-1

LUT
L-to-1

PRR

FSM

335

0 200 400 600 800 1000 1200
10

-8

10
-6

10
-4

10
-2

10
0

10
2

NH = 12, [NO NQ] = [12 11]
NH = 8, [NO NQ] = [8 7]

An error analysis is performed for the same parameters.

Fig. 10 shows the relative error curves for two cases (input
stream = 1024 sinusoid samples). The error metric is:

valueideal
outputFPGAvalueidealerrorlativeRe −= (4)

Fig. 10 shows the relative error to be below 5%. The
peaks occur when FPGA values are zero and the ideal values
are close to zero, resulting in a deceptive 100% error.

B. Dynamic Embedded System
The results are shown for: N = 32, NH = 8, [NO NQ] =

[8 7], L = 4, OP = 0, SYMMETRY = YES (parameters
defined in Subsection II.A). The Partial Reconfiguration
Area is made of () 36sizeILM =× 4-to-1 LUTs. It occupies
a tightly packed area of 8x45=360 CLBs with a 48000 bytes
bitstream. Also, the dynamic system is tested in the 1D
signals mode, i.e. only the first NX outputs are considered.

The system is implemented in the ML405 Xilinx®

Development Board that houses a XC4VFX20-11FF672
Virtex-4 FPGA. The PPC is clocked at 300 MHz and the
peripherals run at 100 MHz.

1) Hardware resource utilization: Table 2 shows the

hardware resource utilization of the static part, dynamic
region and the whole system. The Static Region includes the
FIR Filter processor and every other peripheral controller
shown in Fig. 6. ST_FIR is the portion of the Static Region
that implements only the FIR Filter Processor.

2) FIR Filter Processor performance bounds: The
maximum throughput of the FIR Filter processor is given by:

Gbps8.0
ns10

bits8
cycle1
byte1Throughput.Max === (5)

Note that since the system is pipelined, there is an initial
latency that will become negligible over time. Actual
throughput depends on many factors, e.g.: cache size, PPC
instruction execution, and FSL usage. The maximum
throughput can not be attained since the PPC can not read
and write into the FIFOs at the same time.

3) Reconfiguration Time: Table 3 shows the
reconfiguration time for 3 scenarios. In our setup, called
Scenario 1, we used the Xilinx® ICAP core and obtained a
reconfiguration time of 25.96 ms yielding a reconfiguration
speed of 3.23 MB/s. The reconfiguration time of Scenario 2
is computed based on the speed results reported in [10]. The
dramatic improvement in reconfiguration speed lies on the
use of a custom ICAP controller, DMA access, and burst
transfers. Scenario 3 is the maximum theoretical throughput,
which for Virtex-4 is 400 MB/s [9].

TABLE 2. HARDWARE UTILIZATION ON VIRTEX-4

XC4VFX20-11FF672
Module FF (%) Slice (%) LUT %
PRR 0 0% 948 11% 985 5%
Static Region 3326 19% 4399 51% 6307 36%

ST_FIR 1286 7% 815 9% 626 3%
Overall 3326 19% 5347 62% 7292 41%

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

N

N
um

be
r

of
 s

lic
es

 (
ou

t
of

 8
54

4)

[NO NQ] = [8 7]

[NO NQ] = [12 11]

[NO NQ] = [16 15]

[NO NQ] = [24 23]

0 10 20 30 40 50 60 70
200

250

300

350

N

M
ax

im
um

 F
re

qu
en

cy
 o

f
O

pe
ra

tio
n

[NO NQ] = [8 7]

[NO NQ] = [12 11]
[NO NQ] = [16 15]

[NO NQ] = [24 23]

Figure 8. Resources vs. number of coefficients and output
fixed-point representation

Figure 9. Max. Frequency of operation (MHz) vs. number of
coefficients and output fixed-point representation

Figure 10. Relative error, N = 32. Two bit width cases

336

4) Throughput measurements: The system operation

when measuring throughput was explained in Subsection
III.B. By using timer functions in a software routine, time
was measured from the moment we start reading the input
stream from the SRAM until the processed stream is written
in the SRAM. Out input streams consist of sinusoids.

In order to evaluate the dynamic performance of the
system, we use a stream of 102400 samples (1 sample = 8
bits). The stream is processed a number of times (100 runs).
Within the 100 runs, partial bitstreams are loaded at a
specific rate. Each partial bitstream amounts to a different
filter response. We report the average throughput over the
100 runs. Reconfiguration rate is defined as the number of
processed samples before a reconfiguration is performed.
Throughput is defined in MSPS (Mega samples per second).

Fig. 11 shows the dynamic performance over 100 runs.
There are 3 curves that correspond to the 3 scenarios shown
in Table 3. Static performance, i.e. no reconfiguration,
corresponds to the value at which the 3 curves converge. For
Scenario 1 (our actual measurements), the static performance
resulted in 29.25 MSPS. At the maximum reconfiguration
rate (1 reconfiguration every stream), the dynamic
performance resulted in 3.51 MSPS. The other curves
(Scenarios 2 and 3) provide performance bounds based on
the static performance and reconfiguration speeds of Table 3.

We see that dynamic performance heavily depends on
reconfiguration speed and input stream size. Better
reconfiguration speeds offset the reconfiguration time
overhead. (Scenarios 2 and 3). Longer data streams help to
offset the reconfiguration time overhead.

TABLE 3. RECONFIGURATION TIME FOR A 84KB

BITSTREAM
Scenario Reconfiguration

Speed
Reconfiguration

Time
1. Current 3.23 MB/s 25.96 ms

2. Custom [10] 295.4 MB/s 0.284 ms
3. Ideal 400 MB/s 0.210 ms

V. CONCLUSIONS AND FURTHER WORK
A high-performance and fully parameterizable FIR Filter

has been presented. The small resource utilization is due to
the fixed-nature of coefficients and the efficient use of the
Distributed Arithmetic technique. The dynamic
implementation was evaluated in terms of performance and
resource consumption. It was shown that besides the obvious
factor of the reconfiguration speed, the dynamic performance
depends on the input stream size. In general, the dynamic
performance is less sensitive to the effects of reconfiguration
time overhead as the stream size increases.

Further work consists on making the number of taps
dynamic so as to control power dynamically. On dynamic
performance, we can dramatically improve the
reconfiguration time by using a faster ICAP controller,
demonstrated by Scenario 2 [10] in Fig. 11. On static
performance, there is room for improvement: simulation runs
show that the processor takes a long time writing and reading
on the FSL bus. By using DMA and PLB burst transfers so
as to stream data to the system at a faster rate, better
performances can be achieved. In future applications, the
dynamic system can be used to switch between FIR filters
based on power, performance, resources considerations.

ACKNOWLEDGMENT
The research presented in this paper has been funded by the Air

Force Research Laboratory under grant number QA9453-060C-0211.

REFERENCES

[1] M. Hatamian, and G.L. Cash, “A 70 MHz 8 bit x 8 bit parallel
pipelined multiplier in 2.5 μm CMOS”, IEEE J. Solid-State Circuits,
vol. SC-21, pp. 505-513, Aug. 1986.

[2] C. Chou, S. Mohanakrishman, and J. B. Evans, “FPGA
implementation of digital filters”, Proceedings of Signal Processing
Applications Technol., Santa Clara, CA, 1993.

[3] S. White, “Applications of Distributed Arithmethic to Digital Signal
Processing: A Tutorial Review”, IEEE Transactions on Acoustics,
Speech and Signal Processing Magazine, 4-19, 1989

[4] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J.
Luka, “Dynamic and Partial FPGA Exploitation”, Proc IEEE, vol. 95,
no. 2, pp. 438-452, 2007.

[5] D. Llamocca, M. Pattichis, and A. Vera, “A Dynamically
Reconfigurable Parallel Pixel Processing System”, Proceedings of
FPL’2009, Prague, Czech Republic, Sept. 2009.

[6] “Implementing FIR Filters in FLEX Devices (AN73)”, v1.01 ed.,
Altera Corp., 101 Innovation Drive, San Jose CA 95134, Feb. 1998.

[7] “Early Access Partial Reconfiguration User Guide for ISE 9.204i
(UG208)”, v1.2 ed., Xilinx Inc., 2100 Logic Drive, San Jose CA
95124, Sept. 2008.

[8] “Fast Simplex Link (FSL) Bus Product Specification (DS449)”,
v2.11a ed., Xilinx Inc., 2100 Logic Drive, San Jose CA 95124, Jun.
2007.

[9] Guillermo A. Vera, “A Dynamic Arithmetic Architecture: Precision,
Power, and Performance Considerations”, Ph.D. Dissertation,
University of New Mexico, Albuquerque, NM, USA, May 2008.

[10] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, and J. Becker,
“A Multi-Platform Controller allowing for maximum dynamic partial
reconfiguration throughput”, Proceedings of FPL’2008, Heidelberg,
Germany, Sept. 2008, pp. 535-538.

Figure 11. Throughput vs. Reconfiguration Rate, N = 32

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

Reconf. Rate (# of processed Ksamples before a reconfiguration)

M
S

P
S

Scenario 1 (Our setup)

Scenario 2
Scenario 3 (Ideal Case)

337

