
  

  

Abstract— This paper provides an overview of 
multidimensional AM-FM methods for analyzing medical 
images and videos. Over the last decade, several new AM-FM 
demodulation methods have been developed. We provide a 
discussion of what many of these methods share in common, 
and give some details on recent, Hilbert-based approaches. 

Medical image applications range from medical image 
segmentation, resolution enhancement, classification, 
reconstruction to new methods for video motion estimation. A 
brief summary of suggestions for future work in this area is 
also given. 

I. INTRODUCTION 
Multi-dimensional Amplitude-Modulation Frequency-

Modulation (AM-FM) models and methods provide us with 
powerful, image and video decompositions that can 
effectively describe non-stationary content. They represent 
an extension to standard Fourier analysis, where we allow 
both the amplitude and the phase functions to vary spatially 
over the support of the image, following changes in local 
texture and brightness. 

To explain some of the advantages of AM-FM methods, 
we begin with the basic AM-FM model. In the 2D model, 
we expand an input image ( )yxI ,  into a sum of AM-FM 
harmonics using: 

( ) ( ) ( )∑
=

=
N

n
nn yxyxayxI

1
,cos,, φ                (1) 

Where ( )yxan ,  denote slowly-varying instantaneous 
amplitude (IA) functions, ( )yxn ,φ  denote the instantaneous 
phase (IP) components, and Nn ,,2,1 K=  indexes the 
different AM-FM harmonics. In (1), we have that the n -th 
AM-FM harmonic represented by ( )yxyxa nn ,cos),( φ . 
 In terms of texture features, for each phase function, we 
associate the instantaneous frequency (IF) vector field 
defined by ( )yxn ,φ∇ . Here, the AM-FM demodulation 
problem is defined as one of determining the IA, IP, and IF 
functions for any given input image. We now have a number 
of different methods for computing AM-FM 
decompositions.  

AM-FM decompositions provide for physically 
meaningful texture measurements. Usually, significant 
texture variations are captured in the frequency components. 
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For single component cases, IF vectors are orthogonal to 
equi-intensity lines of an image, while the IF magnitude 
provides a measure of local frequency content. In (1), by 
using AM-FM components from different scales, we can 
produce IF vectors from different scales, at a pixel-level 
resolution [1,2]. 
 Since AM-FM texture features are provided at a pixel-
level resolution, AM-FM models can be used to segment 
texture images that are very difficult to model with the 
standard brightness-based methods [3]. On the other hand, 
using just histograms of the IF and IA, we can design 
effective content-based image retrieval systems using very 
short image feature vectors.  

Some of the advantages of AM-FM models can be 
summarized in that: (i) they provide for a large number of 
physically meaningful texture features, over multiple scales, 
at a pixel-level resolution; (ii) we can reconstruct the image 
from the AM-FM decompositions; (iii) based on the target 
application, we can design for different AM-FM 
decompositions using different frequency coverage; and (iii) 
we have the recent development of very robust methods for 
AM-FM demodulation (see some recent examples in [1]). 
 We can extend AM-FM decompositions for representing 
videos using [4]: 
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where each AM-FM function has been extended to be a 
function of both space and time. The original phase-based 
modeling approach was provided by Fleet and Jepson in [5] 
and was recently extended by Murray et al. in [4,6]. 
 The comparison between an AM-FM reconstruction and 
the original image provides us with a method to better 
understand what AM-FM is measuring. For continuous-
space image decompositions, AM-FM reconstruction 
examples can be found in [7], while [1,2] give several 
recent, robust multi-scale examples for both images and 
videos. AM-FM Transform examples were shown in [8], 
while multidimensional orthogonal FM transforms were 
demonstrated in [9]. 
 An early example of the use of frequency-domain filtering 
to target a particular application can be found in the 
fingerprint examples in [10]. More recently, Ramachandran 
provided a tree-growth application, where inter-ring spacing 
was used to design filterbanks that cover a specific part of 
the spectrum, so as to recover tree ring and tree growth 
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structure from very noisy image inputs [11]. For general 
images, Gabor filterbank approaches were investigated by 
Havlicek in [12]. Similarly, for general images and videos, 
Murray introduced dyadic, multiscale decompositions in his 
dissertation [1]. 
 Alternatively, AM-FM estimates can be obtained using an 
Energy Separation Algorithm (ESA) as described in [13-15]. 
Both ESA and Hilbert-based methods share the use of a 
filterbank prior to AM-FM demodulation. Furthermore, both 
methods extract estimates from a dominant component. For 
ESA, the dominant component is selected based on an 
energy criterion. In QEA, the dominant component is often 
selected based on IA estimates. More details on the 
methodology are given in Section II. 
 Due to space limitations, we will only provide details for 
the Hilbert-based methods. We provide a summary of 
biomedical imaging applications in Section III. Concluding 
remarks and possible future directions are given in Section 
IV. 

II. HILBERT-BASED AM-FM METHODS  
The basic, Hilbert-based AM-FM demodulation system is 

given in Figs 1-3. First, the real-valued input signal is 
“analytically” extended by removing all negative frequency 
components (see Figs. 1 and 3). The effect of this operation 
is to create a complex-valued signal of the form: 

( ) ( )[ ]yxjyxa ,exp, φ . We then use a collection of bandpass 
filters to isolate the individual AM-FM components [12].  

The basic assumption here is that different AM-FM 
components will be picked up by different bandpass filters, 
at the same image region. In other words, given any local 
image region, the assumption is that the corresponding AM-
FM components will be separated by the use of different 
filters in the filterbank. The standard Gabor-based filterbank 
has dominated most of the studies on AM-FM 
decompositions (see [12]).  

Here, we focus our attention on the new dyadic 
decompositions [1,2]. Our focus on the dyadic 
decomposition is based on its promise for significant 
improvements in AM-FM demodulation accuracy that is 
also derived from the fact that we have readily available 

methods for producing separable, optimal digital pass-band 
filters for implementing them.  

A two-scale, dyadic filterbank coverage is shown in Fig. 1. 
Here, the high-frequency filters are numbered from 7 to 12, 
while the low-frequency filters are numbered from 1 to 6. 
The lowest frequencies are covered by a Low-Pass Filter 
(LPF). In this dyadic filterbank, each filter is designed using 
optimal 1-D filter design methods, allowing for very close 
approximations to ideal, bandpass filters. The filterbank can 
be easily extended to cover more scales, by applying the 
procedure iteratively. Alternatively, as in Wavelet theory, 
the same filterbank can be used to generate more scales by 
simply downsampling each filter output and re-applying the 
same two-scale filterbank. 

Following each channel filter, we apply AM-FM 
demodulation to extract the individual AM-FM estimates 
from each bank. Here, we estimate AM-FM components 
using: 

( ) ( )
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where  ( )yxI AS ,  denotes the extended analytic signal, 
( )yxFi ,  denotes the impulse response of the i -th filter, 
( )yxi ,α̂  denotes an IA estimate, and ( )yxi ,ψ̂  denotes an IP 

estimate. 
A robust method for estimating the IF is based on 

considering [1,2]: 
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where ( )[ ]yxjyxI i ,ˆexp),( ψ= , and yx ΔΔ ,  are selected so 
that they minimize the argument of the arc-cosine function. 
For the minimization, we simply select over a small integer 
number of pixels (1 to 4). We use the term Variable-Spacing 
Sequential Linear Phase (VS-SLP) to describe this method. 
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Fig. 1. Dyadic spectral coverage filterbank. 
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Fig. 2. Dominant Component Analysis (DCA) selecting the 
dominant AM-FM estimates from the collection of all estimates. 
Here, we have AM-FM estimates from each band (see Figs. 1 and 
3).
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The VS-SLP is also related to an earlier method, termed the 
Quasi-Eigenfunction Approximation (QEA), used with 
Gabor filterbanks [12]. 

Following AM-FM demodulation at each channel filter, 
we reconstruct the AM-FM components by selecting AM-
FM channel estimates with the largest IA estimate. The 
process, termed Dominant Component Analysis (DCA) [12], 
is applied at every pixel (see Figs. 2). For multi-scale 
decomposition, we select estimates by scale [1]. 

III. BIOMEDICAL IMAGE APPLICATIONS 
 We provide a selected list of Biomedical imaging 
applications in Table I. For a summary of the AM-FM 
methods we refer to the discussion in Section II. 
 In one of the earlier applications in electron microcopy, a 
simple Bayesian method using the IA and the IF was used, 
in conjunction with morphological filtering to provide 
segmentations of different abnormalities over 26 images [3]. 
Elshinawy et al [18] demonstrated the reconstruction of 
breast cancer images using AM-FM components.  
 We also have a number of medical applications based on 
energy operators. Boudraa et al [19] introduced a new cross-
energy operator and used the operator to demonstrate the 
functional segmentation of dynamic nuclear images. 
Maragos et al. provide an important application in [16], 
where AM-FM models are used for improving Doppler 
ultrasound resolution. For the first time, vector-valued based 
AM-FM demodulation is given in [17]. 
 In Murray et al. [6], Hilbet-based AM-FM methods were 
used for providing accurate motion estimation. More 
recently, in 2008, Murray et al. [20] and Agurto et al. [21] 
demonstrated the use of multi-scale AM-FM models for 
retinal image analysis. Using 18 images from four different 
risk levels, the authors showed that AM-FM methods 
provided excellent separations with ROC areas ranging from 
0.93 (0 vs 1) to 0.99 (0 vs 3) [21]. 

IV. CONCLUSIONS AND FUTURE WORK 
AM-FM methods provide for great opportunities for 
application in Biomedical Imaging. Over the years, the 
methods have matured to the point that we now have robust 
AM-FM demodulation methods over multiple scales. 
 Future work can focus on the development of new 
filterbanks that will be specifically tuned to specific 
applications. The use of different, user-defined scales for 
specific applications is also a very promising area. The large 
number of generated AM-FM features requires the future 
study of feature selection methods, as well as methods for 
describing the covariance structure among the different 
features. 
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Fig. 3. Hilbert-based AM-FM Demodulation System for Images and Video. The input signal is used to produce a 
complex-valued “analytic” signal. The complex “analytic signal is fed to a collection of bandpass filters for 
demodulation (see text for details).

 
Author 

 
Filterbank 

AM-FM 
Demodulation 

Method

 
Medical Application 

Pattichis et al. 2000 [3] Gabor filterbank QEA Electron microscopy image segmentation 
Maragos et al. 2002 [16] 1-D Gabor 

filterbank 
ESA Doppler ultrasound spectroscopy resolution 

Elshinawy et al. 2004 [18] Gabor filterbank QEA and continuous-
space demodulation 

Demonstrated AM-FM reconstructions of breast cancer 
images 

Boudraa et al. 2006 [19]  Cross BΨ  energy 
operator 

Nuclear cardiac sequences for one normal and four 
abnormal cases 

Alexandratou et al. [17] Gabor filterbank Vector-valued ESA for 
color images 

Ploidy image analysis (cancer). 

Murray et al, 2007 [6] Dyadic 3D 
filterbank 

QEA + new AM and 
FM motion estimation 

Motion Estimation for Atherosclerotic Plaque videos 
compared against other Phased-based method 

Murray et al [20] and 
Agurto et al [21], 2008 

Dyadic 2D 
filterbank 

New VS-SQP method Retinal image analysis. 

 

TABLE I. SELECT LIST OF AM-FM APPLICATIONS IN BIOMEDICAL IMAGING. 
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