
Real-time Dynamically Reconfigurable 2-D Filterbanks

Daniel Llamocca and Marios Pattichis
Electrical and Computer Engineering Department

The University of New Mexico
Albuquerque, NM, USA

dllamocca@ieee.org, pattichis@ece.unm.edu

Abstract— We introduce a novel dynamically reconfigurable
2D filterbank that is based on separable, one-dimensional
filters. At the lowest level, each 2D filter is implemented using
dynamic reconfiguration between two one-dimensional filters.
Then, at a higher level, filterbanks are implemented using
dynamic partial reconfiguration of efficient 1D filter blocks
(based on distributed arithmetic). We have evaluated the
system’s overall performance as a function of the
reconfiguration rate and we show that real-time video
processing speeds for 2D video filtering can be attained for
several image sizes.

Keywords: FPGA, dynamic partial reconfiguration,
filterbank hardware implementation

I. INTRODUCTION

A common filterbank implementation often requires to
have all its 2D filters present in the hardware and to select
them via multiplexers. A filterbank may be implemented
using internal multiplier and adder circuits (where
coefficients can be modified) or by a fixed-coefficients
circuitry. We will refer to these approaches as static
implementations, since the hardware remains unchanged.
Static implementations exhibit several limitations. As the
number of coefficients or the number of filters grows, there
may not be enough hardware resources for efficient
implementation. Moreover, energy consumption is often a
function of the implemented static hardware regardless of
whether the hardware resources are actually needed.

Dynamic Partial Run-Time Reconfiguration (DPR)
addresses the aforementioned problems by time-multiplexing
FPGA resources [1]. This technique does not require the
device to be turned off prior to reconfiguration. DPR allows
for a portion of the device to be reconfigured, providing
significant time and power savings over static
reconfiguration approaches.

Embedded hardware image processing systems have
been widely reported (e.g.: [2, 3, and 4]). FPGA
implementations of multiplier-based 2-D filters have also
been reported in [5] and [6]. These realizations are static
implementations. The use of DPR has been reported for DSP
applications in [7, 8, and 9]. However, embedded image
processing systems that employ DPR are yet to be found.

Dynamically reconfigurable 1D filters were shown in [7,
10]. In [10], a multiply and add dynamic filter was
implemented. In [7], we showed the highly efficient
implementation using distributed arithmetic. In this paper,

we present a dynamically reconfigurable system for
implementing 2-D separable filterbanks.

Our approach only requires that the device has sufficient
resources to implement a single 1-D filter at any given point
in time. A portable VHDL description allows us to pre-
compute 1D filter blocks that use different number of
coefficients, different coefficients, and filtering structure.
This is an extension of our earlier version of the 1D filter that
only allowed changes in the coefficients [7].

The filter reconfigurations are handled inside the FPGA,
allowing the system to run automatically with no external
control, unlike full static reconfiguration. The
reconfiguration time overhead can be reduced significantly
using newly developed reconfiguration controllers [11, 12].

The rest of the paper is organized as follows: Section II
explain the methodology followed to design the filterbank.
Section III provides results in terms of resource utilization
and throughput as a function of the reconfiguration rate.
Section IV summarizes the paper and discusses further work.

II. METHODOLOGY

A. System Block Diagram

Fig. 1 depicts the system block diagram. The PowerPC
(PPC) processor and the dynamic Filter core are linked the
high speed Fast Simplex Bus [13]. The dynamic portion of
the filter core is called the Partial Reconfiguration Region
(PRR) and holds a specific filter realization. The PRR can be
dynamically reconfigured via the internal configuration
access port (ICAP) driven by the ICAP controller core [14].
The Double Data Rate Random Access Memory
(DDRRAM) stores volatile data at run-time, e.g.: input

Figure 1. System Block Diagram

PPC

PLB

System

ACE

Ethernet

MAC

DDRRAM

128MB

ICAP

core

control

unit
PRR

1D Filter core

FSL

ICAP

port

CF

card

181978-1-4244-7802-6/10/$26.00 ©2010 IEEE SSIAI 2010

frames, processed frames, and partial bitstreams.
SystemACE [15] is used for reading a Compact Flash (CF)
card that stores the partial bitstreams at power up. The
Ethernet core provides reliable communication with a PC,
and allows us to read new partial bitstreams or new input
frames, and write processed frames back to the PC.

B. 2-D Filterbank implementation with DPR

Since we work with separable 2-D filters, we implement
a 2-D filter by working with one 1-D filter at a time, as Fig. 2
depicts. The modification of the one-dimensional Filter is
carried out via DPR, which modifies only the 1-D filter
circuit. This 1D circuit is an efficient and highly
parameterized filter. The one-dimensional filter
implementation is based on distributed arithmetic and
requires very few hardware resources [7]. Dynamic
reconfiguration allows for an efficient implementation of any
separable filterbank while requiring few hardware resources
for a single 1-D filter. Furthermore, dynamic reconfiguration
allows us to modify the input and/or output bitwidth as well
as the number of coefficients and its values.

Before explaining the 2-D filterbank procedure, it is
important to remark the 1-D filtering process in the context
of Fig. 1: The PPC reads data from DDRRAM, then streams
data to the 1D filter core, and finally grabs the output of the
1D filter core and writes them back to DDRRAM.

The 2-D Filterbank processing scheme is shown in Fig. 2.
The process is as follows:

• Step 1: We start by filtering all the rows and storing

the processed pixels back in memory.
• Step 2: We reconfigure the 1D filter core with the

corresponding column filter.
• Step 3: We filter the processed pixels from Step 1

through the 1D column filter. Here we get the final
filtered frame in DDRRAM.

• Step 4: We reconfigure the filter again with the row
filter of the next 2-D filter of the filterbank. Then
proceed to Step 1. If all the filters have been applied,
we reconfigure the filter with the row filter of the
first 2-D filter of the filterbank, and we proceed with
a new frame at Step 1.

As we can see, we perform two reconfigurations per 2D
filter. This specific implementation was chosen because of
its very low hardware and power requirements.

In terms of memory accesses, we note that column
filtering is slower than row filtering. Row filtering processed
and stores the results in a sequential row-by-row fashion.
Column filtering requires that we fetch a single pixel from
each row, i.e. memory accesses are not sequential.

Fig. 3 depicts how a filterbank with 3 filters can be
realized using 1D filters. We start by filtering a frame with
the 2-D filter defined by the set {A1, A2}, then with the filter
{B1, B2} (B1 inserted at Step 4 and B2 at Step 2 in Fig. 2)
and finally with the filter {C1, C2}. After the frame has been
filtered by the three filters, we start over with a new frame.
We can see that the filterbank is implemented as a collection
of 1D filters that are multiplexed in time.

III. RESULTS

A. Platform testing scheme

We use the ML405 Development board that contains a
XC4VFX20-11FF672 Xilinx® Virtex-4 device. The PPC is
clocked at 300 MHz and the peripherals run at 100 MHz. In
order to improve performance, the DDRRAM memory space
is cached. We employ several sets of grayscale 40-frames
videos, each set with a different frame size.

1

row filter

1D Filter core

A1

column filter

A2

1D Filter core

Frame is streamed

Dynamic Partial
Reconfiguration

Dynamic Partial
Reconfiguration

PRR PRR

Processed row -by-row frame is streamed

2

3

4

1D Filter core 1D Filter core

B1

PRR

A2

PRR

column filter row filter

A1

PRR

A2

PRR

column filter

1D Filter core

1D Filter core

row filter

Replacing row filter by column filter

Replacing column filter by row filter

Figure 2. Dynamically Reconfigurable 2-D Filterbank using partial
reconfiguration of 1-D modules.

Figure 3. 2D filterbank implementation by time-multiplexing 1D filters.

A1

1D Filter

2D Filter

A2

1D Filter

B1

1D Filter

2D Filter

B2

1D Filter

C1

1D Filter

2D Filter

C2

1D Filter

t1 t2 t3 t4 t5 t6

A1 A2 B1 B2 C1 C2

FPGA

2D Filterbank

182

TABLE 1. HARDWARE UTILIZATION ON VIRTEX-4 XC4VFX20-11FF672
Module FF (%) Slice (%) LUT %
PRR (columns) 1852 11% 1759 21% 1759 10%
Static Region 4019 24% 5521 65% 8078 47%
Overall 5871 34% 7280 85% 9837 58%

TABLE 2. RECONFIGURATION TIME FOR A 124KB BITSTREAM

Scenario Reconfiguration
Speed

Reconfiguration
Time

1. Current 3.23 MB/s 38.39 ms
2. Custom [11] 180 MB/s 0.69 ms
3. Custom [12] 295.4 MB/s 0.42 ms

4. Ideal 400 MB/s 0.31 ms

Results are shown under the following conditions: Both

1D filters have 16 coefficients with 16-bit width. The row-
filter has an 8-bit input and a 16-bit output. The column-filter
has a 16-bit input and a 16-bit output width. The PRR
occupies a tightly packed area of 20x96 = 1920 slices
(124000 bytes bitstream). This PRR holds the column-filter
(the larger one), so that any 1D filter with the previously
mentioned parameters can fit. We consider four 2-D filters.

B. Hardware resource utilization.

Table 1 shows the hardware resource utilization of the
static region, dynamic region, and the whole system. The
static region includes the static portion of the FIR filter and
all the peripheral controllers shown in Fig. 1. As it can be
seen, the static region takes most of the FPGA fabric. The
reason for this is the large size of the DDRRAM controller.
And the PRR (our 1D filter) takes about 20% of the device.

C. Reconfiguration Time

Table 2 shows the reconfiguration time for 4 scenarios. In
the basic setup [16], called Scenario 1, we used the Xilinx®
ICAP core and obtained a reconfiguration time of 38 ms
yielding a reconfiguration speed of 3.23 MB/s. We also
consider improved reconfiguration rates based on a custom
embedded controller [11] (Scenario 2). Similar results are
reported in [12] (Scenario 3). The dramatic improvement in
reconfiguration speed lies on the use of a custom ICAP
controller, Direct Memory Access, and burst transfers.
Scenario 4 is the maximum theoretical throughput, which for
Virtex-4 is 400 MB/s [16].

D. Throughput measurements.

The operation of the circuit for throughput measurement
purposes is as follows: We first place the partial bitstreams
and input frames on DDRRAM. An input frame is streamed
through the row-filter core, and the resulting frame is stored
in DDRRRAM. This frame is then streamed through the
column-filter core, and the final output frame is written back
to the DDRRAM. This process is continuously repeated with
different partial bitstreams loaded after each frame is
processed (either row-wise or column-wise), following the
guidelines in Section III.B, so as to get different 2D filters.

Note that the number of 2D filters of the filterbank is
irrelevant to the output throughput measurements. The only
difference more filters make is that more space is needed in
DDRRAM to store the partial bitstreams. On the other hand,

the number of filters will linearly scale with performance, in
terms of processed frames per second. In other words, the
use of N filters will reduce the number of processed frames
per second by a factor of N.

By using timer functions in the PPC software routine, the
processing time for one frame was measured from the
moment the input frame is streamed from the DDRRAM
until the processed frame is written back in the DDRRAM.

Figure 4. Output throughput against inverse reconfiguration rate

Figure 5. fps for different frame sizes.
 Solid lines: one 2-D filter; Dashed lines: 2-D filterbank with four 2-D filters

0 500 1000 1500 2000 2500 3000
0

5

10

15

Inv. Reconf. Rate (# of Kbytes before a reconfiguration)

T
hr

ou
gh

pu
t

(M
B

/s
)

Scenario 1

Scenario 2
Scenario 3

Scenario 4 (Ideal)

320x240 425x355 640x480 1024x768 1600x1200
0

20

40

60

80

100

120

140

160

180

Frame sizes

fr
am

es
 p

er
 s

ec
on

d
(f

ps
)

Scenario 2

Scenario 3
Scenario 4 (Ideal)

320x240 425x355 640x480 1024x768 1600x1200
0

2

4

6

8

10

12

14

Scenario 1

183

We measure the reconfiguration rate in terms of number
of processed bytes before a new reconfiguration is
performed. For one filter, we reconfigure twice per frame.
Note that if the input frame for the row-wise filtering has
SIZE bytes, the processed frame ready for the column-wise
filtering has 2*SIZE bytes (recall that input pixels are 8-bit
wide and processed pixels are 16-bit wide). As a result, we
can say that on average we process 1.5*SIZE bytes before a
new reconfiguration.

Note that the only way of adjusting the reconfiguration
rate is by modifying the frame size. We define the dynamic
reconfiguration rate in terms of the inverse of the number of
bytes that are being processed prior to a reconfiguration.

Fig. 4 reports the output throughput attained in all the
reconfiguration scenarios for several frame sizes (shown in
Fig. 5). The five points plotted for each Scenario corresponds
to a particular frame size. However, we found it more
meaningful to present the results in terms of the number of
processed bytes prior to reconfiguration, which corresponds
to the inverse of the reconfiguration rate.

In Fig. 5, we report results in terms of the number of
frames per second attained in all reconfiguration scenarios
for several frame sizes. Clearly, as the frame size increases,
the number of processed frames per second goes down. Two
set of graphs are shown. In the first case (group of solid
lines), we only consider one 2-D filter. In the second case
(group of dashed lines), we consider four 2-D filters, and as
expected the fps gets reduced by a factor of four.

Here, we note that for Scenario 2, 3, and 4, we report
synthetic results based on our measured static performance
and reconfiguration speeds of Table 1.

From Figure 5, we see that for the 2D filters, we have
performance levels that exceed 30 fps for most of the cases
(Scenarios 2, 3, or 4). This means that real-time video
filtering is possible with Dynamic Partial Reconfiguration
provided we use a better ICAP controller. In the case of the
2D filterbank, real-time video processing was attained for
frame sizes up to 320x240.

IV. CONCLUSIONS

An efficient implementation of a generic 2D filterbank
has been presented that employs dynamic partial
reconfiguration. The architecture has shown promising
results in the sense that it is can process real-time video for
frames sizes up to 320x240.

The dynamic implementation was evaluated in terms of
performance and resource consumption. It was shown that
the dynamic performance depends on the input stream size.
In general, the dynamic performance is less sensitive to the
effects of reconfiguration time overhead as the stream size
increases. Regarding the frames per second, as expected, the
performance gets worse as the frame size increases, no
matter how negligible the reconfiguration time overhead is.

Further work will focus on: i) reducing the
reconfiguration time overhead by using a faster ICAP
controller, as exemplified by Scenarios 2 and 3, ii) assessing
the power savings attained compared to a multiply-and-add
static implementation, and iii) implement and image analysis

system. In general, the implementation has shown that real
time video processing is attainable for both 2-D filtering and
2-D filterbank processing. The real-time image analysis
system will be used to implement AM-FM feature extraction
and classification.

ACKNOWLEDGMENT

The research presented in this paper has been funded by
the Air Force Research Laboratory under grant number
QA9453-060C-0211.

REFERENCES
[1] J. Becker, M. Hubner, G. G. Hettich, R. Constapel, J. Eisenmann, and

J. Luka, “Dynamic and Partial FPGA Exploitation”, Proc. IEEE, vol.
95, no. 2, pp. 438-452, 2007.

[2] D.G. Bariamis, D.K. Iakovidis, D.E. Maroulis, and S.A. Karkanis,
“An FPGA-based architecture for real time image feature extraction”,
Proceeding of IPRC 2004, Cambridge, United Kingdom, Aug. 2004,
pp. 801-804.

[3] J. Diaz, E. Ros, F. Pelayo, E. M. Ortigosa, S. Mota, “FPGA—based
real-time optical-flow system”, IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, no. 2, pp. 274-279, 2006.

[4] S.O. Memik, A.K. Katsaggelos, M. Sarrafzadeh, “Analysis and FPGA
Implementation of Image Restoration under resource constraints”,
IEEE Transactions on Computers, vol. 52, no. 3, pp. 390-399, 2003.

[5] C.-S. Bouganis, G.A. Constatinides, P.Y.K. Cheung, “A novel 2D
filter design methodology for heterogeneous devices”, Proceedings of
FCCM 2005, Napa, CA, April 2005, pp. 13-22.

[6] A. Madanayake, L. Bruton, C. Comis, “FPGA Architectures for real-
time 2D/3D FIR/IIR plane wave filters”, Proceedings of ISCAS 2004,
Vancouver, Canada, May 2004, vol. 3, pp. 613-616.

[7] D. Llamocca, M. Pattichis, and G. A. Vera, “A Dynamically
Reconfigurable Platform for Fixed-Point FIR Filter”, Proceedings of
ReConFig’09, Cancun, Mexico, Nov. 2009, pp. 332-337.

[8] T. Rissa, R. Uusikartano, and J. Niitylahti, “Adaptive FIR filter
architectures for run-time reconfigurable FPGAs”, in Proceedings of
2002 IEEE International Conference on Field-Programmable
Technology, Hong Kong, China, Dec. 2002, pp. 52-59.

[9] C. Choi, and H. Lee, “A partial self-reconfigurable adaptive FIR filter
system”, in Proceeding of 2007 IEEE Workshop on Signal Processing
Systems, Shanghai, China, Oct. 2007, pp. 204-209.

[10] Y. Oh, H. Lee, C. Lee, “A reconfigurable FIR filter design using
dynamic partial reconfiguration”, Proceedings of ISCAS 2006, Island
of Kos, Greece, May 2006, pp. 4851-4854.

[11] John C. Hoffman, “High-Speed Dynamic Partial Reconfiguration for
Field Programmable Gate Arrays”, M.S. Thesis, University of New
Mexico, Albuquerque, NM, USA, July 2009.

[12] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, and J. Becker,
“A Multi-Platform Controller allowing for maximum dynamic partial
reconfiguration throughput”, Proceedings of FPL’2008, Heidelberg,
Germany, Sept. 2008, pp. 535-538.

[13] “Fast Simplex Link (FSL) Bus Product Specification (DS449)”,
v2.11a ed., Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124, Jun.
2007.

[14] “XPS HWICAP (DS586)”, v1.00a ed., Xilinx Inc., 2100 Logic Drive,
San Jose, CA, 95124, Nov. 2007.

[15] “XPS SYSACE (System ACE) Interface Controller (DS583)”, v1.00a
ed., Xilinx Inc., 2100 Logic Drive, San Jose, CA, 95124, Oct. 2007.

[16] Guillermo A. Vera, “A Dynamic Arithmetic Architecture: Precision,
Power, and Performance Considerations”, Ph.D. Dissertation,
University of New Mexico, Albuquerque, NM, USA, May 2008.

184

