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Abstract— We introduce a novel dynamically reconfigurable 
2D filterbank that is based on separable, one-dimensional 
filters. At the lowest level, each 2D filter is implemented using 
dynamic reconfiguration between two one-dimensional filters.  
Then, at a higher level, filterbanks are implemented using 
dynamic partial reconfiguration of efficient 1D filter blocks 
(based on distributed arithmetic). We have evaluated the 
system’s overall performance as a function of the 
reconfiguration rate and we show that real-time video 
processing speeds for 2D video filtering can be attained for 
several image sizes. 
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I.  INTRODUCTION 

A common filterbank implementation often requires to 
have all its 2D filters present in the hardware and to select 
them via multiplexers. A filterbank may be implemented 
using internal multiplier and adder circuits (where 
coefficients can be modified) or by a fixed-coefficients 
circuitry. We will refer to these approaches as static 
implementations, since the hardware remains unchanged. 
Static implementations exhibit several limitations. As the 
number of coefficients or the number of filters grows, there 
may not be enough hardware resources for efficient 
implementation. Moreover, energy consumption is often a 
function of the implemented static hardware regardless of 
whether the hardware resources are actually needed. 

Dynamic Partial Run-Time Reconfiguration (DPR) 
addresses the aforementioned problems by time-multiplexing 
FPGA resources [1]. This technique does not require the 
device to be turned off prior to reconfiguration. DPR allows 
for a portion of the device to be reconfigured, providing 
significant time and power savings over static 
reconfiguration approaches. 

Embedded hardware image processing systems have 
been widely reported (e.g.: [2, 3, and 4]). FPGA 
implementations of multiplier-based 2-D filters have also 
been reported in [5] and [6]. These realizations are static 
implementations. The use of DPR has been reported for DSP 
applications in [7, 8, and 9]. However, embedded image 
processing systems that employ DPR are yet to be found. 

Dynamically reconfigurable 1D filters were shown in [7, 
10]. In [10], a multiply and add dynamic filter was 
implemented. In [7], we showed the highly efficient 
implementation using distributed arithmetic. In this paper, 

we present a dynamically reconfigurable system for 
implementing 2-D separable filterbanks. 

Our approach only requires that the device has sufficient 
resources to implement a single 1-D filter at any given point 
in time. A portable VHDL description allows us to pre-
compute 1D filter blocks that use different number of 
coefficients, different coefficients, and filtering structure. 
This is an extension of our earlier version of the 1D filter that 
only allowed changes in the coefficients [7]. 

The filter reconfigurations are handled inside the FPGA, 
allowing the system to run automatically with no external 
control, unlike full static reconfiguration. The 
reconfiguration time overhead can be reduced significantly 
using newly developed reconfiguration controllers [11, 12]. 

The rest of the paper is organized as follows: Section II 
explain the methodology followed to design the filterbank. 
Section III provides results in terms of resource utilization 
and throughput as a function of the reconfiguration rate. 
Section IV summarizes the paper and discusses further work. 

II. METHODOLOGY 

A. System Block Diagram 

Fig. 1 depicts the system block diagram. The PowerPC 
(PPC) processor and the dynamic Filter core are linked the 
high speed Fast Simplex Bus [13]. The dynamic portion of 
the filter core is called the Partial Reconfiguration Region 
(PRR) and holds a specific filter realization. The PRR can be 
dynamically reconfigured via the internal configuration 
access port (ICAP) driven by the ICAP controller core [14]. 
The Double Data Rate Random Access Memory 
(DDRRAM) stores volatile data at run-time, e.g.: input  
 

Figure 1. System Block Diagram 
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frames, processed frames, and partial bitstreams. 
SystemACE [15] is used for reading a Compact Flash (CF) 
card that stores the partial bitstreams at power up. The 
Ethernet core provides reliable communication with a PC, 
and allows us to read new partial bitstreams or new input 
frames, and write processed frames back to the PC. 

B. 2-D Filterbank implementation with DPR 

Since we work with separable 2-D filters, we implement 
a 2-D filter by working with one 1-D filter at a time, as Fig. 2 
depicts. The modification of the one-dimensional Filter is 
carried out via DPR, which modifies only the 1-D filter 
circuit. This 1D circuit is an efficient and highly 
parameterized filter. The one-dimensional filter 
implementation is based on distributed arithmetic and 
requires very few hardware resources [7]. Dynamic 
reconfiguration allows for an efficient implementation of any 
separable filterbank while requiring few hardware resources 
for a single 1-D filter. Furthermore, dynamic reconfiguration 
allows us to modify the input and/or output bitwidth as well 
as the number of coefficients and its values. 

Before explaining the 2-D filterbank procedure, it is 
important to remark the 1-D filtering process in the context 
of Fig. 1: The PPC reads data from DDRRAM, then streams 
data to the 1D filter core, and finally grabs the output of the 
1D filter core and writes them back to DDRRAM. 

The 2-D Filterbank processing scheme is shown in Fig. 2. 
The process is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Step 1: We start by filtering all the rows and storing 

the processed pixels back in memory. 
• Step 2: We reconfigure the 1D filter core with the 

corresponding column filter. 
• Step 3: We filter the processed pixels from Step 1 

through the 1D column filter. Here we get the final 
filtered frame in DDRRAM. 

• Step 4: We reconfigure the filter again with the row 
filter of the next 2-D filter of the filterbank. Then 
proceed to Step 1. If all the filters have been applied, 
we reconfigure the filter with the row filter of the 
first 2-D filter of the filterbank, and we proceed with 
a new frame at Step 1. 

As we can see, we perform two reconfigurations per 2D 
filter. This specific implementation was chosen because of 
its very low hardware and power requirements. 

In terms of memory accesses, we note that column 
filtering is slower than row filtering. Row filtering processed 
and stores the results in a sequential row-by-row fashion. 
Column filtering requires that we fetch a single pixel from 
each row, i.e. memory accesses are not sequential. 

Fig. 3 depicts how a filterbank with 3 filters can be 
realized using 1D filters. We start by filtering a frame with 
the 2-D filter defined by the set {A1, A2}, then with the filter 
{B1, B2} (B1 inserted at Step 4 and B2 at Step 2 in Fig. 2) 
and finally with the filter {C1, C2}. After the frame has been 
filtered by the three filters, we start over with a new frame. 
We can see that the filterbank is implemented as a collection 
of 1D filters that are multiplexed in time. 

III. RESULTS 

A. Platform testing scheme 

We use the ML405 Development board that contains a 
XC4VFX20-11FF672 Xilinx® Virtex-4 device. The PPC is 
clocked at 300 MHz and the peripherals run at 100 MHz. In 
order to improve performance, the DDRRAM memory space 
is cached. We employ several sets of grayscale 40-frames 
videos, each set with a different frame size. 
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Figure 2. Dynamically Reconfigurable 2-D Filterbank using partial 
reconfiguration of 1-D modules. 

Figure 3. 2D filterbank implementation by time-multiplexing 1D filters. 
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TABLE  1.     HARDWARE UTILIZATION ON VIRTEX-4 XC4VFX20-11FF672 
Module FF (%) Slice (%) LUT % 
PRR (columns) 1852 11% 1759 21% 1759 10% 
Static Region 4019 24% 5521 65% 8078 47% 
Overall 5871 34% 7280 85% 9837 58% 

 
TABLE 2.     RECONFIGURATION TIME FOR A 124KB BITSTREAM 

Scenario Reconfiguration 
Speed 

Reconfiguration 
Time 

1. Current 3.23 MB/s 38.39 ms 
2. Custom [11] 180 MB/s 0.69 ms 
3. Custom [12] 295.4 MB/s 0.42 ms 

4. Ideal 400 MB/s 0.31 ms 
 
Results are shown under the following conditions: Both 

1D filters have 16 coefficients with 16-bit width. The row-
filter has an 8-bit input and a 16-bit output. The column-filter 
has a 16-bit input and a 16-bit output width. The PRR 
occupies a tightly packed area of 20x96 = 1920 slices 
(124000 bytes bitstream). This PRR holds the column-filter 
(the larger one), so that any 1D filter with the previously 
mentioned parameters can fit. We consider four 2-D filters. 

B. Hardware resource utilization. 

Table 1 shows the hardware resource utilization of the 
static region, dynamic region, and the whole system. The 
static region includes the static portion of the FIR filter and 
all the peripheral controllers shown in Fig. 1. As it can be 
seen, the static region takes most of the FPGA fabric. The 
reason for this is the large size of the DDRRAM controller. 
And the PRR (our 1D filter) takes about 20% of the device. 

C. Reconfiguration Time 

Table 2 shows the reconfiguration time for 4 scenarios. In 
the basic setup [16], called Scenario 1, we used the Xilinx® 
ICAP core and obtained a reconfiguration time of 38 ms 
yielding a reconfiguration speed of 3.23 MB/s. We also 
consider improved reconfiguration rates based on a custom 
embedded controller [11] (Scenario 2). Similar results are 
reported in [12] (Scenario 3). The dramatic improvement in 
reconfiguration speed lies on the use of a custom ICAP 
controller, Direct Memory Access, and burst transfers. 
Scenario 4 is the maximum theoretical throughput, which for 
Virtex-4 is 400 MB/s [16].  

D. Throughput measurements. 

The operation of the circuit for throughput measurement 
purposes is as follows: We first place the partial bitstreams 
and input frames on DDRRAM. An input frame is streamed 
through the row-filter core, and the resulting frame is stored 
in DDRRRAM. This frame is then streamed through the 
column-filter core, and the final output frame is written back 
to the DDRRAM. This process is continuously repeated with 
different partial bitstreams loaded after each frame is 
processed (either row-wise or column-wise), following the 
guidelines in Section III.B, so as to get different 2D filters. 

Note that the number of 2D filters of the filterbank is 
irrelevant to the output throughput measurements. The only 
difference more filters make is that more space is needed in 
DDRRAM to store the partial bitstreams. On the other hand, 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the number of filters will linearly scale with performance, in 
terms of processed frames per second. In other words, the 
use of N filters will reduce the number of processed frames 
per second by a factor of N. 

By using timer functions in the PPC software routine, the 
processing time for one frame was measured from the 
moment the input frame is streamed from the DDRRAM 
until the processed frame is written back in the DDRRAM. 

Figure 4. Output throughput against inverse reconfiguration rate 

Figure 5. fps for different frame sizes. 
 Solid lines: one 2-D filter; Dashed lines: 2-D filterbank with four 2-D filters 
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We measure the reconfiguration rate in terms of number 
of processed bytes before a new reconfiguration is 
performed. For one filter, we reconfigure twice per frame. 
Note that if the input frame for the row-wise filtering has 
SIZE bytes, the processed frame ready for the column-wise 
filtering has 2*SIZE bytes (recall that input pixels are 8-bit 
wide and processed pixels are 16-bit wide). As a result, we 
can say that on average we process 1.5*SIZE bytes before a 
new reconfiguration. 

Note that the only way of adjusting the reconfiguration 
rate is by modifying the frame size. We define the dynamic 
reconfiguration rate in terms of the inverse of the number of 
bytes that are being processed prior to a reconfiguration. 

Fig. 4 reports the output throughput attained in all the 
reconfiguration scenarios for several frame sizes (shown in 
Fig. 5). The five points plotted for each Scenario corresponds 
to a particular frame size. However, we found it more 
meaningful to present the results in terms of the number of 
processed bytes prior to reconfiguration, which corresponds 
to the inverse of the reconfiguration rate. 

In Fig. 5, we report results in terms of the number of 
frames per second attained in all reconfiguration scenarios 
for several frame sizes. Clearly, as the frame size increases, 
the number of processed frames per second goes down. Two 
set of graphs are shown. In the first case (group of solid 
lines), we only consider one 2-D filter. In the second case 
(group of dashed lines), we consider four 2-D filters, and as 
expected the fps gets reduced by a factor of four. 

Here, we note that for Scenario 2, 3, and 4, we report 
synthetic results based on our measured static performance 
and reconfiguration speeds of Table 1. 

From Figure 5, we see that for the 2D filters, we have 
performance levels that exceed 30 fps for most of the cases 
(Scenarios 2, 3, or 4). This means that real-time video 
filtering is possible with Dynamic Partial Reconfiguration 
provided we use a better ICAP controller. In the case of the 
2D filterbank, real-time video processing was attained for 
frame sizes up to 320x240. 

IV. CONCLUSIONS 

An efficient implementation of a generic 2D filterbank 
has been presented that employs dynamic partial 
reconfiguration. The architecture has shown promising 
results in the sense that it is can process real-time video for 
frames sizes up to 320x240.  

The dynamic implementation was evaluated in terms of 
performance and resource consumption. It was shown that 
the dynamic performance depends on the input stream size. 
In general, the dynamic performance is less sensitive to the 
effects of reconfiguration time overhead as the stream size 
increases. Regarding the frames per second, as expected, the 
performance gets worse as the frame size increases, no 
matter how negligible the reconfiguration time overhead is. 

Further work will focus on: i) reducing the 
reconfiguration time overhead by using a faster ICAP 
controller, as exemplified by Scenarios 2 and 3, ii) assessing 
the power savings attained compared to a multiply-and-add 
static implementation, and iii) implement and image analysis 

system. In general, the implementation has shown that real 
time video processing is attainable for both 2-D filtering and 
2-D filterbank processing. The real-time image analysis 
system will be used to implement AM-FM feature extraction 
and classification. 
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