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ABSTRACT   

Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in 

color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm 

developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. 

First, the OD location is identified using template matching and directional matched filter. To reduce false positives due 

to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated 

as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic 

disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which 

combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc 

boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 

431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location 

methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute 

distance (MAD) between the OD segmentation algorithm and “gold standard” is 10.5% of estimated OD radius. 

Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation 

algorithm performs well even on blurred images.  
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1. INTRODUCTION  

1.1 Motivation 

Diabetic Retinopathy (DR) is a retinal disease caused by complications of diabetes mellitus, which can eventually lead to 

blindness. Prior to the onset of perceived visual loss, DR patients may not present any symptoms.  If DR is detected 

early, the treatment is more effective and significant savings in care costs can be realized.  

Automated retinal image analysis promises to provide objective, fast, accurate, and consistent screening information to 

augment manual screening of the growing diabetic population. One of the first requirements for automatic screening of 

DR is the localization of anatomical landmarks such as the optic disc, fovea, and retinal vasculature. 

The optic disc center and margin are typically requisite landmarks in establishing a frame of reference for classifying 

retinal pathology. The optic disc is the region of the retina where the vasculature enters and leaves the eye and its 

appearance is different from the surrounding retinal tissue. The optic disc in a healthy retinal image usually appears as a 

bright yellowish and ellipse-shaped object marked by vessels. However, the entire retina as well as the optic disc may 

appear different due to the natural geometry of the scene or technical errors in the photography. A retina image may, for 

instance, suffer uneven illumination resulting in a less distinct and blurred appearance of OD. The temporal side of optic 

disc is usually brighter than the nasal side (in macula-centered photographs). Retinal abnormalities may also 

dramatically affect the appearance of the OD. Image examples exhibiting large variations in the appearance of the optic 

disc are shown in Figure 1. During the development of an automatic OD localization method it is important to consider 

that the optic disc variations in appearance, size and location. 
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Figure. 1 Diverse appearance of the optic disc. (a) Uneven OD brightness with distinct large vessels (b) Blurred OD 

appearance caused by cataract (c)  OD appearance with peripapillary atrophy  (d) Myelinated nerve fibers connected to OD 

margin  

 

1.2 Optic disc location state of the art 

A number of different techniques have been employed to automatically detect the optic disc. Reviews of OD detection 

methods were given by Winder, et al. [1] (for all image  processing steps in diabetic retinopathy) and Youssif [2] 

(specially for optic disc detection). Osareh, et al. used template matching based on high intensity and shape [3]. Lalonde, 

et al. developed pyramidal decomposition with Hausdorff-based template matching [4]. Lowell, et al. used template 

matching to locate OD and initialize OD segmentation, which was performed using a global elliptical shape model 

combined with local variable stiffness model [5].  State-of-the-art OD localization techniques not only use the 

characteristics of OD, but also exploit the location and orientation of vessels [6-9]; Hoover, et al. applied fuzzy 

convergence of blood vessels to locate the center of OD [10]. Foracchia, et al. localizes the OD by fitting a parametric 

geometrical model to the main vessels extracted from the image [11]. The use of the vasculature could improve the OD 

localization reliability, especially when OD is not visible within the image. On the other hand, the prerequisite step of 

segmenting the vascular tree to detect OD is a complex and difficult task. Its performance is affected by bright lesions 

and the OD contour. Misclassification of the vasculature may degrade the performance of subsequent OD detection.  

Our purpose is to develop a fast, efficient and robust algorithm for OD localization in DR screening. We use vessel 

characteristics inside the OD region to aid in this task. Our method uses template matching in the CIELab lightness 

image to select OD candidates.  Further identification of the OD location is implemented by directional matched filter in 

the green channel within the OD candidates. This methodology not only quickly exploits the high intensity, large 

intensity variation and elliptical shape of optic disc, but also utilizes vessel characteristics inside optic disc. 

Temporal to the optic disc is the pigmented macula which appears darker in color. The avascular fovea lies at the center 

of the macula and is the part of the retina that is used for fine vision. The macula is an approximately circular dark area, 

but the contrast is often quite low and it may be obscured somewhat by exudates and hemorrhages. The fovea is located 

approximately 2–2.5 disc diameters to the temporal edge of the optic disc and between the major temporal retinal 

vascular arches. These positional constraints can be used to identify a small search area for the fovea. The location with 

the lowest template matching response within the fovea search region is selected as the fovea location. 

1.3 Optic disc segmentation state of the art 

Previous investigators have described a variety of algorithms for the OD boundary segmentation. Active contours is one 

of the most promising approaches in this area. Mendels, et al. [12] investigated applying a morphological operator 

followed by the GVF active contour to segment the disk with an interactively initialized curve which is set close to the 

true contour of OD. The technique was tested on a set of nine retinal images but no quantitative evaluation was 

presented.  Osareh, et al.  [3] has proposed intensity template matching to initialize the deform contour. Then they used 

color morphological processing to obtain a more homogeneous inner disc area, which increased the accuracy of the GVF 

active contour segmentation. An overall accuracy of 91.84% was reported in comparison to the reference standard of a 

clinical ophthalmologist on 75 images. Lowell, et al. [5] also first localized OD by a template matching technique. A 

global elliptical parametric model combined with local variable edge-strength dependent stiffness model was then fitted 

to the contour of the disk. The algorithm was evaluated on 90 over 100 images since 10 images were classified as 

unusable. The algorithm achieved excellent-fair performance in 83% of cases. Li [13] proposed a modified active shape 
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model (ASM) to segment OD for exudates detection. The algorithm successfully detected the OD boundary in 33 of 35 

images. OD boundary segmentation is an essential procedure for glaucoma analysis. Xu [14] proposed an improved 

deformable model by using knowledge-based clustering and smoothing update to reduce false deformation in OD and 

cup segmentation. The proposed method achieved 94% success rate for the 100 images. The above researches were 

conducted on a limited number of retinal images. The performance of those algorithms could be significantly degraded if 

applied to a large number of images exhibiting a significant variation in the OD appearance due to imaging quality, 

retinal lesions and other artifacts. Recently, Aquino [15] presented a fast OD boundary detection technique and 

evaluated on Messidor database, which consists of 1200 retinal images. The segmentation was performed in parallel on 

both red channel and green channel of the down-sampled images. The channel with the higher score in the circular 

Hough transform based on the edge map is selected as the OD boundary approximation. Compared to the above 

algorithms, our OD detection algorithm exploits vessel characteristics inside OD besides the template matching. All the 

parameters of template and image processing parameters are set automatically base on the size of field of view of 

camera. Our OD segmentation algorithm deform the evolving curve based on the region intensity and edge vector, which 

performs very well on blurred OD. No special requirement for curve initialization is needed in our method. The curve 

automatically deforms to the OD boundary based on automatically set region threshold. All the processes are performed 

on the original image, without image size scaling, which inevitably loses image information for the processing. 

 

2. METHODOLOGY 

2.1 Optic disc and fovea detection algorithm 

The optic disc location algorithm is designed based on the characteristics of the different channels in digital color fundus 

images. Although in the red channel of fundus images the optic disc generally has good intensity contrast and well-

defined boundaries, this observation is not always true in diabetic retinopathy images. Even in healthy retinal images, 

red channel image saturation is common due to the imaging technique or eye/fundus pigmentation.  

CIElab is the most complete color space specified by the International Commission on Illumination.  It is designed to 

approximate human vision and serve as a device independent model to be used as a reference. Its lightness component L 

closely matches human perception. In the L component image of CIELab color space, the optic disc keeps good intensity 

contrast and well-defined boundaries. Meanwhile, the image lightness is more uniform and less saturated than the one in 

the red channel. Our experiments verified that template matching in CIElab L component images has a better 

performance than in red channel images. 

A description of the detection algorithm, as well as an example of the algorithm applied to a diabetic retinopathy fundus 

image (Figure 2), is presented as follows. A region-of-interest (ROI) mask is generated to separate the pixels that belong 

to the field of view (FOV) from the background after converting the RGB color image to CIElab color space. All the 

sequential steps were performed in the FOV mask. 

 

Template matching 

A binary template consists of a white disk with value 1 and black background with value 0 is used instead of averaging 

multiple retinal images to generate the template (Figure 2(a)). The performance of this simple template is not inferior 

compared to the intensity template. We have experimented with the usage of a few variations of the template, and 

concluded that there are no significant advantages in using a specific one. The radius of the white circle is determined 

based on an estimate of the optic disc diameter. The size of the optic disc varies significantly in different images. The 

images in the Messidor database are acquired using a color video 3CCD camera on a Topcon TRC NW6 non-mydriatic 

retinograph with a 45 degree field of view. The imaged area of the retina is 124.8 mm
2
 for a 45 degree FOV [16]. We 

can formulate the computation of OD diameter in an image (pixels) based on the diameter of the average optic nerve 

head (dOD) , which is assumed to be approximately 1850 µm in the eye [17].  

In the FOV mask, we can count the number of pixels NFOV in the FOV. Then, the image footprint is computed as: 
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where, AFOV  is the imaged area of the specific field of view. Then we can compute the OD diameter in pixels           

using the average area size of optic nerve head AOD and the image footprint: 
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where      (    ⁄ )  . 

Then all the template parameters are determined automatically based on the estimated OD diameter or OD radius. The 

template length is set to be 3 times the OD radius. Since the purpose of template matching is only to coarsely search the 

OD candidates, we speed up the algorithm by setting search distance as one fourth of the OD radius.  

The Pearson correlation coefficient is used to measure the degree to which CIElab lightness sub-image and template 

agree in general behavior. The template matching responses were sorted in ranked order. The same values need to be in 

the same rank to ensure selecting all the possible OD candidates. The locations of a certain percentage of the largest 

template matching responses were selected as OD candidates (Figure 2, (c)). 

 

Directional matched filtering 

The use of directional matched filtering in OD candidates is to distinguish the real OD location, where vertical vessels 

pass through, from the large bright regions, such as exudates, myelinated nerve fibers etc. The intensity profile of the 

cross section of a retinal vessel can be approximated by a Gaussian shaped curve. The two dimensional matched filter 

kernel is designed to convolve with the green channel image in order to enhance and detect the vessels inside OD 

candidates[18]. A prototype matched filter kernel, which matching a number of cross sections along vessel length is 

expressed as  

 (   )        
    ⁄      | |    ⁄  

where L is the length of the segment for which the vessel is assumed to have a fixed orientation (   ). The direction 

of the vessel is assumed to be aligned along the y axis. Since the vessels inside the OD region appear nearly along the 

vertical direction, the Gaussian kernel (15×16 pixels) used here is along the horizontal profile. The vessel width inside 

OD normally is 15% of the OD diameter [19].  We found that the maximal vessel width is 13 pixels from the above OD 

diameter computation for all the images in Messidor database. Within the OD candidates, only the vertical vessels are 

enhanced by the directional matched filtering.  The candidate with the maximum standard deviation after matched 

filtering in the region is determined to be the OD location (Figure 2 (d)).  

 

Fovea detection 

The fovea is located approximately 2–2.5 optic disc diameters away from the temporal edge of the optic disc. Based on 

the detected optic disc location two fovea search regions are defined. One for the case the image is obtained from the left 

eye and one for the right eye case. In the left eye fundus image the fovea is located to the right of the optic disc and vice 

versa for the right eye fundus image. As it is unknown a priori whether the image is for left or right eye, both search 

regions need to be considered. We can always exclude one search region that falls outside of the FOV. The search region 

has been defined as follows: we choose the center of the search region as the location which is at 4.5 times OD radius to 

the optic disc. The search region is a square with length of 2 disc diameters (blue square, Figure 2 (d)). No further 

template matching computation is needed, since the template matching responses in OD detection were saved and the 

minimum response to the template matching in the fovea search region is the location of fovea.  

 



 

 
 

 

 

 

Figure 2. OD and fovea detection (a) Template (b) A retinal image with grade 3 DR and grade 2 risk of ME. (b) OD 

candidates after template matching in the CIELab Lchannel. (c) OD and fovea location result (X is the ground truth, + is the 

detected OD and fovea location). 

 

2.2 Optic disc segmentation algorithm 

In some cases, the optic disc boundary may appear blurred and faint due to cataract or inadequate photography, or the 

vessels obscure the OD margins. We use a fast hybrid level set model [20] with automatic initialization to solve this 

difficulty in  OD segmentation. This model uses the region intensity information and edge vector to drive the deformable 

contour converges to the true OD boundary. The OD segmentation is performed on a cropped sub-image, centered at the 

detected OD location, the size of the ROI is                  . The initial contour can be automatically set as a 

circle with the center at the detected OD location and the radius equal the estimated OD radius.  

 

Saturation Detection in Red Channel  

Having compared several color spaces, we found that the OD appear most contrasted against the background and has 

least vessel distractions in the red channel. Our OD segmentation is performed in red channel. But in some images, the 

red channel is saturated around the OD that degraded the algorithm performance. For the images, whose red channels are 

saturated, CIELab lightness image is used for OD segmentation. A red channel saturation detection algorithm was 

developed based on the red channel intensity information in ROI region. 

We have                  ⁄ , then the OD area                  
 , the ROI area is               

 . The OD 

occupies about one-tenth of the ROI sub-image. This means that the 90th percentile value approaches the maximum 

intensity value in the ROI. If the red channel is saturated, there are a lot of bright pixels in the ROI, thus we check that if 

the 50th percentile value in ROI is larger than 80% of the maximum intensity value, then the OD segmentation is 

performed in CIElab image instead of the red channel.  

 

Vessel Removal 

Because blood vessels introduce errors in OD segmentation, they must first be removed from the image. Morphological 

closing was used to remove dark details from the image.  When the size of the structuring element corresponds to the 

vessel width in OD, vessels are removed from the image, leaving a lighter background in the region previously occupied 

by them. Since the blood vessels were determined to be no wider than 14 pixels, we started with a symmetrical disc 

structuring element of radius 15 pixels. To get a more homogeneous OD region, we used successively larger structuring 

elements by 10 pixels and performed closing three times. In order to remove the large intensity peaks and make the OD 

region homogenous after closing, we applied opening by reconstruction with a disc structural element whose radius is 10 

pixels larger than the one used in the last closing operation. Since closing is the combination of dilation and erosion with 

the same structure element, the OD boundary inaccuracy recorded is minor. Opening by reconstruction remove the very 

bright region smaller than the structural element without altering the papillary region shape. 
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Fast Hybrid Level set Model 

The technique used in this study is based on our previous development of a hybrid level set model to ultrasound cardiac 

image segmentation [21, 22]. The level set model is given as:  

          1 2(1 , ) , , , ,g s x y u x y v x y s x y g
t


     


        
   

Where the external forces of the above deformable model are the gradient vector flow (GVF) ( (   )  (   )) and the 

advection vector determined by edge vector   .   is defined as: 

 
     

2

1
,

1 , ,

g x y

G x y I x y 



  

 

The GVF allows the curve has relatively free initialization and quick deformations at the homogenous region at the 

beginning of deformation. The edge vector field is designed to stop the edge leaking at weak edges when the curve is 

approaching the true boundaries. The internal force of the model is contour curvature  .   ,s x y is a step function 

defined as:  

 (   )  {
      (     )  ( (   ))      

      (     )  ( (   ))      
 

where  ,f x y  is the image map function defined by: 

 
2

( , ) ( ( , )* ( , ))f x y G x y I x y  

 
The value of  ,s x y is determined by the average of the edge map over the current zero level-set at each iteration.  

Since GVF is computationally time consuming, we used region intensity information in the level set model to make the 

model robust to the segmentation initialization. Meanwhile, it also provides a more powerful stopping function at weak 

edges. This method is called “fast hybrid level set model”.  The curve evolution PDE is presented as: 

 I g g
t


      


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  

The first term on the right hand side represents expansion or contraction movement based on the comparison between 

the region intensity enclosed by the contour and a predefined threshold λ indicating the lower bound of the target object 

intensity. Normally, the OD exhibits higher intensities than the rest of the image. If the intensity of the region enclosed 

by the contour is greater than the threshold, the contour expands along the curve normal direction. Otherwise, it shrinks 

at the reverse direction of the curve normal. The second term is the internal force determined by curvature. The third 

term is the edge vector which helps stopping the evolving curve at the object boundary. α, ε, β are the parameters to 

control the balance of forces. 

Zhang [20] used a fast and unconditionally stable finite difference method to solve the above PDE. It is called additive 

operator splitting (AOS) approach. The above equation can be simplified to  

   I div g
t


   


   


 

if φ is a signed distance function (SDF) defined in level set model, i.e. |  |    , and    . where,  

     (  |  |⁄ ). The above PDE equation could be solved efficiently by using the AOS approach.  

The threshold λ should be set at the lower bound of OD region intensity. We set the value of λ based on the contrast 

estimation of the ROI after morphology operations: 

        



 

 
 

 

where μ and σ are the mean and standard deviation of the ROI intensity. Since the OD only occupies a small part of ROI, 

the mean intensity of ROI tends to the intensity of background, we add a coefficient       to make the threshold λ 

higher to distinguish the OD region intensity from the ROI’s background. We choose          for OD 

segmentation in retinal images. 

 

Least Square Ellipse Fitting 

The curvature is used as an internal force to make the evolving contour smooth during the deformation. The final curve 

may still appear irregular due to the influence of strong blood vessels. We apply the least square criterion to estimate the 

best fit to an ellipse from the detected OD boundary. This step can generate smooth OD borders and is useful for optic 

cup-to-disc ratio computation in glaucoma analysis.  

 

3. RESULTS 

3.1 Data set  

In this study 1200 digital color fundus photographs were tested. They were collected from a diabetic retinopathy publicly 

available database kindly provided by the Messidor program partners (see http://messidor.crihan.fr). The database 

contains 1200 color fundus images of the posterior pole acquired by 3 ophthalmologic departments (400 images from 

each department)  using a color video 3CCD camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45 degree 

field of view. 800 images were acquired with pupil dilation (one drop of Tropicamide at 10%) and 400 without dilation. 

The images were captured using 8 bits per color channel at three different image sizes: 1440×960, 2240×1488, or 

2304×1536 pixels. The optic disc segmentation “gold standard” images are publicly available and kindly provided by 

University of Huelva, Spain (http://www.uhu.es/retinopathy) [15]. Fovea location ground truth was provided by an 

expert ophthalmic technician.  

3.2 Optic disc and fovea location  

Tables 1 and 2 summarize the results for OD and fovea location. The results in this section were obtained based on the 

original image resolution. If the detected OD center is within the actual circumference of the optic disc in the gold 

standard, then it is considered success. For the fovea detection, we determined success if the detected position is within 

half of the OD radius distance of the marked fovea ground truth. 

Table 1 presents the results according to the level of retinopathy as graded by Messidor specialists. Grade 0 means no 

retinopathy, grades 1 and 2 correspond to patients with non-proliferative retinopathy (NPDR), and grade 3 corresponds 

to patients with severe NPDR or proliferative DR. Table 2 presents the results according to the risk of macular edema, 

assessed by the present of exudates in the image. Grade 0 corresponds to normal images (no exudates), grade 1 to images 

with exudates located more than 1 disc-diameter away from the fovea, and level 2 to images with exudates located 

within 1 disc-diameter away from the fovea (highest risk of macular edema). 

We notice that the images with highest grade of diabetic retinopathy and the risk of macular edema, have the lowest 

success rate of OD and fovea location. It is interesting that the images with grade 1 of diabetic retinopathy and the risk of 

macular edema, have the highest success rate. The reason might be a lot of normal images, which have no retinopathy, 

have myopic crescents, myelinated nerve fibers or peripapillary atrophy, all of which contribute to incorrect results from 

the algorithm.  

Figure 3 shows some examples of the optic disc and fovea location results. The algorithm was implemented in 

MATLAB v7.11 (MathWorks). The average running time of the optic disc and fovea localization is 3.9 seconds per 

image (1440×960) on an Intel® Xeon® CPU W3520, 2.67GHz, 6GB RAM computer. 

 

http://messidor.crihan.fr/
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Figure 3, Examples of OD and fovea detection (X represent ground truth, + represent the detected OD and fovea locations). 

Note that our algorithm disregards the myelinated nerve fibers below the disc in the left image thanks to the complementary 

use of vessel location within the OD. 

 

Table 1 Diabetic Retinopathy Grade and OD, fovea location results 

DIABETIC RETINOPATHY GRADE 

DR Grade Number of images Optic Disc Detection Fovea Detection 

3 260 96.16% 85.77% 

2 247 99.19% 95.95% 

1 153 99.34% 99.35% 

0 540 98.71% 97.78% 

total 1200 98.33% 95% 

 

Table 2 Risk of Macular Edema and OD, fovea location results 

RISK OF MACULAR EDEMA 

ME Grade Number of images Optic Disc Detection Fovea Detection 

2 154 97.26% 85.71% 

1 75 100% 98.67% 

0 971 98.39% 96.19% 

total 1200 98.33% 95% 

 

3.3 Optic disc segmentation  

The performance of the OD segmentation algorithm is quantitatively evaluated using the mean absolute distance (MAD). 

MAD measures the average difference between two OD contours, and is obtained by averaging the distance to the 

closest point (DCP) of all the points on the two curves. If the two curves 
1   and 

2 can be represented as finite sets of 

points   1 1 2, , , pn n n  and   2 1 2, , , qm m m  , The DCP for  ni on the curve 
1  to the curve  

2 is defined as  

 2, min .i j i
j

d n m n    

The mean absolute distance (MAD) between the two curves is defined as: 

     1 2 2 1

1 1

1 1 1
, , ,

2

p q

i j

i j

M d n d m
p q 

 
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 
   

The Haudorff distance finds the maximum difference between the corresponding points on the two curves. It is defined 

as the maximum of the DCPs between the two curves: 

        1 2 2 1, max max , ,max ,i j
i j

H d n d m      

Two examples of OD segmentation and the evaluation metric values are presented in Figure 4. The red channel is used 

for OD segmentation in the first example (images at the first row in Figure 4). The MAD is 3 pixels and the Hausdroff 

distance is 10 pixels. The second example used CIElab image for OD segmentation since the red channel is severely 

saturated. The MAD is 7 pixels and Hausdroff distance is 20 pixels. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 4.  (a) A cropped ROI image (OD radius = 100 pixels) with detected OD location and initial contour (green), gold 

standard in white (b) morphology closing and opening by reconstruction (c) computer generated segmentation in blue, gold 

standard in red, and Hausdroff distance in yellow.(d) computer generated segmentation in blue, ellipse fitting in green, gold 

standard in red, MAD = 3 pixels. Hausdroff = 10 pixels. (e) The second example image (OD radius = 100 pixels) with 

detected OD location and initial contour (green), gold standard in white (f) saturated red channel. (g) computer generated 

segmentation in blue, gold standard in red, and Hausdroff distance in yellow.(h) computer generated segmentation in blue, 

ellipse fitting in green, gold standard in red, MAD = 7 pixels. Hausdroff = 20 pixels. 

 

From the quantitative MAD values on Figure 4, we notice that evaluating the algorithm performance in terms of pixels is 

dependent on the size of the image being analyzed. Instead, we use the ratio between MAD and the estimated OD radius 

for our algorithm performance evaluation. Table 3 shows the evaluation results on 1200 images in Messidor database 

without any exclusion for the images with poor image quality.  Qualitatively, we define four categories (Excellent, 

Good, Fair, and Poor) according to the relation between MAD and the OD radius (see Table 3 first column). Fig.5 shows 

examples in each category. The relation between MAD and OD radius correspond reasonably well to the subjective 

assessment of segmentation quality.  

To evaluate the OD segmentation algorithm independently, OD centers was manually located for the images in which 

the OD detection fails. It can be observed from Table 3, MAD is less than or equal to one-tenth of OD radius for 66% of 

1200 images in the database, which corresponding to the Excellent to Good range. MAD is less than or equal to one-

third of OD radius for 97% of the images in the database, which corresponding to the Excellent to Fair range. The 

average MAD obtained for the whole set of images was about one-tenth (10.5%) of the OD radius regardless the 

different image resolutions. The average computation time for optic disc segmentation was 5.9 seconds for image 

(1440×960) on the same machine as OD detection. 
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Table 3 Segmentation results of the Messidor database 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (a) Segmentation examples for OD radius = 100 pixels. Computer generated segmentation in blue, ellipse fitting in 

green, gold standard in red. (a) Excellent, MAD = 3.3 pixels (b) Good, MAD = 8.2 pixels (c) Fair, MAD = 17.4 pixels. (d) 

Fair, MAD = 25.1 pixels. (e) Poor, MAD = 93.4 pixels 

 

 

 

 

 

 

 

 

  

 

Figure 6. (a) the OD location is out of OD boundary in the gold standard (white contour), initial contour is green (OD radius 

= 100 pixels), (b) computer generated segmentation in blue, ellipse fitting in green, gold standard in red. MAD = 11 pixels. 

Hausdroff = 30 pixels. (c) Very blurred OD boundary with initialization (green), gold standard in white. (d) computer 

generated segmentation in blue, ellipse fitting in green, gold standard in red. MAD = 12 pixels. Hausdroff = 23 pixels. 

Lariboisière CHU de St Etienne LaTIM - CHU de BREST 

(2240×1488) (1440×960) (1440×960, 2304×1536)

(rOD_img = 100 pixs) (rOD_img = 70 pixs) (rOD_img1=70 pixs, rOD_img2=110 pixs)

Excellent MAD ≤ 1/20 × rOD_img 34% 29% 33% 32%

Good MAD ≤ 1/10× rOD_img 71% 64% 64% 66%

MAD ≤ 1/5× rOD_img 90% 89% 87% 89%

MAD ≤ 1/3× rOD_img 98% 98% 96% 97%

Poor MAD > 1/3× rOD_img 100% 100% 100% 100%

Mean MAD (pixs) 9.5 7.2 8.2, 11.5 

Mean MAD / rOD_img 9.50% 10.29% 11.71%, 10.46% 10.49%

Fair

Total 

(a) (b) (c) (d) 

(a) (b) (c) (d) (e) 



 

 
 

 

In some cases, the automatically initialized contour intersected the optic disc boundary due to the offset between the 

located OD and true OD center (within one disc radius). The fast hybrid level set method has the ability to drive the 

contour to enclose the regions with intensity greater than certain value even the initialization is not “perfect”. In Figure 

6(a), the detected OD location is out of the OD boundary in the gold standard. Even then, the level set model still 

converges to the true OD border (Figure6 (b)). This shows that the segmentation method is robust to the variations in 

detected OD locations. The algorithm also performs well on the OD with blurred margin due to cataracts (Figure6 (c)). 

The region intensity information in the hybrid model forces the evolving contour converges to the true OD boundary as 

shown in Figure 6(d). 

 

4. DISCUSSION 

To compare to the results obtained by Aquino et. al. [15], we also compute the overlapping degree between the 

segmented OD areas As and the true OD regions At marked in gold standard images, which defined as: 

   
     
     

      

The average area overlap ratio between the segmented OD boundary and the gold standard for the whole dataset is 83%, 

which is 3% less than the one obtained by Aquino et. al. This result might due to the following possible reasons: First, 

The gold standard of OD boundary on each image in the Messidor database was created by single grader from Aquino’s 

research group since the database is huge. That means that a certain inter-reader variability is to be expected. Second, 

they down-sampled all the images to 640×640 for OD segmentation, thus reducing the image resolution up to about 10 

times compared to the original images. After OD segmentation, the images were up-sampled to the original image size to 

compare to the gold standard marked on the original images. This down- and up-sampling procedure definitely 

introduces some uncertainty in the final results, but benefits the computation speed. Our algorithm uses the detected OD 

location as the center of the region of interest (ROI), the size of ROI depend on the automatically determined OD radius 

based on the field of view of camera and image resolution. No extra uncertainty or errors was introduced during OD 

segmentation and evaluation.  

Our deformable model is sensitive to the peripapillary atrophy and myelinated nerve fibers which appear very bright 

region and are connected to the OD border (see Figure 5 (e) as an example). Another common case of poor segmentation 

is that when the image has very low contrast OD boundary companied with very strong vessel branches, after the vessel 

removal by morphology operations, the brightness of OD and contrast of OD border was further decreased, the poor OD 

segmentation result is inevitable. Further improvement could be implemented by removing vessels without decreasing 

the OD boundary contrast using vessel masks.  

The hybrid level set deformable model has the potential to adapt to any topological change of the target object. 

Therefore, it is sensitive to irregular and non-homogeneousness of the target object. we used least square ellipse fitting to 

smooth the irregular segmented OD boundary and prepare for optic cup-to-disc ratio computation in future glaucoma 

analysis. We noticed that there is no significant difference for average MAD and area overlapping ratio with or without 

ellipse fitting after level set segmentation; meanwhile, there is a significant difference for Hausdroff distance with or 

without ellipse fitting. The average Hausdroff distance is reduced by one-tenth of the original value after ellipse fitting. 

5. CONCLUSION 

A new, robust OD and fovea localization methodology for fast retinal image screening has been developed. The OD 

detection methodology not only exploits the appearance features of the OD, but also the vessels location and orientation 

inside the OD to increase robustness. The OD segmentation method uses both the region information and object 

boundary with simple initialization to achieve robust, fast, and accurate segmentation. The future DR screening system 

will have to be robust, provide high accuracy rates, and be fast in order to support high workloads and near real time 

operation. The methodology developed here has been designed to satisfy those requirements. The robustness and 

efficiency makes the methodology suitable for assisting on automatic screening for early signs of diabetic retinopathy.  



 

 
 

 

REFERENCES 

[1] Winder, R. J., Morrow,P. J., McRitchie,I. N.,  Bailie,J. R. and Hart,P. M.,"Algorithms for digital image processing 

in diabetic retinopathy," Computerized Medical Imaging and Graphics, 33(8),608-622 (2009). 

[2] Youssif, A., Ghalwash, A. Z., and Ghoneim, A., "Optic disc detection from normalized digital fundus images by 

means of a vessels' direction matched filter," Ieee Transactions on Medical Imaging, 27(1), 11-18 (2008). 

[3] Osareh, A.,Mirmehdi,M., Thomas,B. and Markham R.,"Comparison of Colour Spaces for Optic Disc Localisation in 

Retinal Images," In Proceedings of the 16 th International Conference on Pattern Recognition (ICPR'02), 1,10743-

10746 (2002). 

[4] Lalonde, M., Beaulieu, M., and Gagnon, L.,"Fast and robust optic disc detection using pyramidal decomposition and 

Hausdorff-based template matching," Ieee Transactions on Medical Imaging, 20, 1193-1200 (2001). 

[5] Lowell, J.,Hunter,A., Steel,D., Basu,A., Ryder,R., Fletcher,E. and Kennedy,L.,"Optic nerve head segmentation," 

Ieee Transactions on Medical Imaging 23(2), 256-264 (2004). 

[6] Tobin, K. W., Chaum,E., Govindasamy, V. P. and Karnowski,T. P., "Detection of anatomic structures in human 

retinal imagery," Ieee Transactions on Medical Imaging 26(12), 1729-1739 (2007). 

[7] Niemeijer, M., Abramoff, M. D., and van Ginneken, B.,"Fast detection of the optic disc and fovea in color fundus 

photographs," Medical Image Analysis 13(6), 859-870 (2009). 

[8] Fleming, A. D., Goatman, K. A.,  Philip, S.,  Olson,J. A. and  Sharp,P. F.,"Automatic detection of retinal anatomy to 

assist diabetic retinopathy screening," Physics in Medicine and Biology 52(2), 331-345 (2007). 

[9] Niemeijer, M., Abramoff, M. D., and van Ginneken, B.,"Segmentation of the optic disc, macula and vascular arch in 

fundus photographs," Ieee Transactions on Medical Imaging 26(1),116-127 (2007). 

[10] Hoover, A., and Goldbaum, M.,"Locating the optic nerve in a retinal image using the fuzzy convergence of the 

blood vessels," Ieee Transactions on Medical Imaging, 22(8), 951-958 (2003). 

[11] Foracchia, M., Grisan, E., and Ruggeri, A.,"Detection of optic disc in retinal images by means of a geometrical 

model of vessel structure," Ieee Transactions on Medical Imaging 23(10), 1189-1195 (2004). 

[12] Mendels, F., heneghan, C., and Thiran, J. P.,"Identification of the optic disk boundary in retinal images using active 

contours," Proceedings of the Irish Machine Vision and Image Processing Conference, 103-115 (1999) 

[13] Li, H. Q., and Chutatape, O.,"Automated feature extraction in color retinal images by a model based approach," Ieee 

Transactions on Biomedical Engineering, 51(2), 246-254 (2004). 

[14] Xu, J., Chutatape,O., Sung,E.,Zheng, C., and  Kuan,P. C. T., "Optic disk feature extraction via modified deformable 

model technique for glaucoma analysis," Pattern Recognition, 40(7), 2063-2076 (2007). 

[15] Aquino, A., Gegundez-Arias, M. E., and Marin, D.,"Detecting the Optic Disc Boundary in Digital Fundus Images 

Using Morphological, Edge Detection, and Feature Extraction Techniques," Ieee Transactions on Medical Imaging, 

29(11), 1860-1869 (2010). 

[16]  "http://www.optos.com/en-us/Professionals/Optometry/Case-Clinical-Studies/". 

[17] Hubbard, L. D.,  Brothers,R. J.,  King,W. N., Clegg,L. X.,  Klein, R., Cooper,L. S.,Sharrett, A. R.,Davis,  M. D. and  

Cai,J. W.,"Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in 

the atherosclerosis risk in communities study," Ophthalmology, 106, 2269-2280 (1999). 

[18] Chaudhuri, S., Chatterjee, S.,  Katz,N., Nelson,M.  and Goldbaum, M. ,"Detection of Blood-Vessels in Retinal 

Images Using Two-Dimensional Matched-Filters," Ieee Transactions on Medical Imaging, 8(3), 263-269 (1989). 

[19] Cunningham, D. J., Cunningham's Text-Book of Anatomy, Oxford Univ. Press, New York, (1981). 

[20] Zhang, Y.,  Matuszewski,B. J., Shark, L.K. and Moore, C. J.,"Medical Image Segmentation Using New Hybrid 

Level-Set Method," Proceedings of the 2008 Fifth International Conference BioMedical Visualization, 71-76 

(2008). 

[21] Yu, H., Pattichis, M. S., and Goens, M. B.,"Multi-view 3D Reconstruction with Volumetric Registration in a 

Freehand Ultrasound Imaging System," Proc. of the SPIE International Symposium on Medical Imaging, 6147(6), 

45-56 (2006). 

[22] Yu, H., Pattichis, M. S., and Goens, M. B.," Robust Segmentation of Freehand Ultrasound Image Slices Using   

        Gradient Vector Flow Fast Geometric Active Contours," Proc. of the 2006 IEEE Southwest Symposium on Image  

       Analysis and Interpretation, 115-119 (2006). 

 


