
SEPARABLE FIR FILTERING IN FPGA AND GPU IMPLEMENTATIONS: ENERGY,
PERFORMANCE, AND ACCURACY CONSIDERATIONS

Daniel Llamocca†, Cesar Carranza*, and Marios Pattichis†

†Electrical and Computer Engineering Department,
The University of New Mexico, Albuquerque, NM, 87131, USA

*Sección Electricidad y Electrónica, Pontificia Universidad Católica del Perú, Lima 32, Perú
dllamocca@ieee.org, acarran@pucp.edu.pe, pattichis@ece.unm.edu

ABSTRACT

Digital video processing requires significant hardware
resources to achieve acceptable performance. Digital video
processing based on dynamic partial reconfiguration (DPR)
allows the designers to control resources based on energy,
performance, and accuracy considerations.
 In this paper, we present a dynamically reconfigurable
implementation of a 2D FIR filter where the number of
coefficients and coefficients values can be varied to control
energy, performance, and precision requirements. We also
present a high-performance GPU implementation to help
understand the trade-offs between these two technologies.
 Results using a standard example of 2D Difference of
Gaussians (DOG) filter indicate that the DPR
implementation can deliver real-time performance with
energy per frame consumption that is an order of magnitude
less than the GPU. On the other hand, at significantly
higher energy consumption levels, the GPU implementation
can deliver very high performance.

1. INTRODUCTION

Hardware implementations of digital video processing
methods are of great interest because of the ubiquitous
applications. In terms of performance acceleration, many
image and video processing algorithms require efficient
implementation of 2D FIR filters [1].
 Dynamic partial reconfiguration (DPR) allows FPGA
designers to explore different implementations based on
energy, performance, and accuracy requirements. In
addition to DPR, efficient filter implementations are based
on the direct use of LUTs [2], the distributed arithmetic
technique [3], and separable designs [4, 5].
 On the other hand, Graphic Processing Units (GPUs)
offer high-performance floating point capabilities at
significant energy consumption levels [6]. With the
introduction of OpenCL and CUDA (Compute Unified
Device Architecture), there has been a significant growth of
GPU implementations; with [7] and [8] as examples of 2D
FIR implementations.
 .

 In this paper, we are interested in exploring the energy,
performance, and accuracy trade-offs between DPR FPGA
and the corresponding GPU implementations. Some trade-
offs have been explored in [8] and [9]. Our goal is to
provide recommendations for different implementations
based on specific energy and performance requirements.
 The paper is organized as follows: Section 2 describes
the embedded filter implementation on the FPGA. Section 3
details the GPU filter implementation. Section 4 explains
the measurement setup for both implementations. Section 5
presents the results in terms of Energy, performance, and
accuracy. Finally, Section 6 summarizes the paper.

2. 2D FIR FILTER SYSTEM ON THE FPGA

We consider a 2D separable filtering implementation that is
an extension of prior work presented in [3] and [4]. Here,
we extend prior research to allow DPR of the entire FIR
core, its FSL (Fast Simplex Link) bus interface, and the
Partial Reconfiguration Region (PRR) control interface.

2.1. System Architecture

Figure 1 depicts the block diagram of the embedded
system. The 1D FIR Filter processor core and the PowerPC
(PPC) interact via the Fast Simplex Link (FSL) bus. The
PRR is reconfigured via the internal configuration access
port (ICAP). The Compact Flash (CF) card holds the partial
bitstreams and input data. Bus macros are no longer needed
in the Xilinx ISE 12.2 Partial Reconfiguration Tools.
 In the context of the embedded system of Fig. 1 a 2D
separable filter is realized by i) filtering the rows, ii) turning
a row filter into a column filter via DPR, and iii) filtering
the columns. Figure 2 depicts this scheme, where the 2D
filter can be modified at run-time by using a different pair
of row and column filters.
 The filtered images (row and column-wise) are stored in
the DDRRAM. The row-wise filtered image is transposed
in the memory before it is streamed to the column filter.
The system is implemented in the ML405 Xilinx Dev.
Board that houses a XC4VFX20 Virtex-4 FPGA. The PPC
is clocked at 300 MHz and the peripherals at 100 MHz.

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.71

363

2.2. 1D FIR filter core

This fixed-point core is based on the one presented in [3].
We allow for full-reconfiguration, i.e. the entire filter is
included in the PRR. Several modifications are introduced:
 A new parameter ‘B’ allows the specification of the

input data bit-width. This is different from the
coefficients’ bit-width.

 The frame size determines the input length of both the
row and column filter. The input length is a parameter
to the Finite State Machine (FSM) that controls the FSL
interface. As a result, the FSL interface has to be
included in the PRR (see Fig. 1).

 An interface that disables the PRR outputs during
reconfiguration is required since the PRR outputs now
include FSL interface signals (shown in Fig. 1).

Here, the 2D filter requires 2 bitstreams: one for the row

filter and one for the column filter. The PRR must
accommodate the largest filter.

3. FILTER IMPLEMENTATION ON THE GPU

We consider a parallel FIR algorithm implementation in the
CUDA environment [10]. Here, parallelism is achieved by
a grid that consists of blocks, with each block having a
number of threads. All threads within a block are run in
parallel from the software perspective. The actual number
of blocks that can run in parallel is bounded by the number
of streaming multiprocessors (SMs). Here, we can run a
single block on each SM. Also, the number of threads that
can be run in parallel at each SM is given by the number of
CUDA cores inside each SM.
 For the purposes of this paper, we will report energy
and performance measurements on the GPU (termed the
device) as opposed to the CPU (termed the host). Here,
GPU memory is divided into global memory, shared
memory, constant memory, and texture memory.

 The algorithm exposes and exploits parallelism of the
2D FIR filter in order to obtain significant speed up gains. It
is based on ideas exposed in [7]. Double precision (64 bits)
is utilized. The filter symmetry and its separability are taken
advantage of. We summarize the algorithm steps below:
1. The image and the filter kernel are transferred form the

host to the device (global memory).
2. The image is then divided into blocks. Each image

block is filtered by a thread block by rows.
3. The row-filtered image is also divided into blocks.

Each image block is column- filtered by a thread block.
4. The final filtered image is transferred to the host.

 To further describe the algorithm, we let the input image
to be of size HxW (H rows by W columns) and a filter
kernel of size KxK (row and column filter of same length).
We refer to [7] for more details on the separable
implementation. Performance is achieved based on: i) loop
unrolling, ii) storing image blocks in shared memory, and
iii) storing the filtering coefficients in constant memory.
 Each image block is processed as follows: It is first
loaded to the shared memory (with extra ⎣ ⎦2K pixels on
both sides for correct filtering). Then, for row filtering, each
thread inside a block performs a point-wise multiplication
between the row kernel and a row portion of the image; and
then adds up each product producing an output pixel. This
process continues until the filtered image block is obtained.

PPC

PLB

System

ACE
DDRRAM

Ethernet

MAC

ICAP

core

FIR Filter processor

FSL

ICAP

port

CF

card
in

te
rf

ac
e

FIR IP
core

D
PR

 c
tr

l PRR

FS
L

Figure 1. System Block Diagram

Figure 2. 2D separable FIR filter implementation.

DPR

tr1 tc1 FPGA

ROW COL

COL

tr2 tc2

ROW COL

1 Frame is streamed

Processed row -by-row frame is streamed

2

3

4

Replacing row filter by column filter via DPR

Replacing column filter by row filter via DPR

ROW

DPR
ROWCOL

Processing
frame 1

Processing
frame 2

5 Go to Step 1 to process a new frame

ROW PRR

row filter

col f ilter

COL

364

 Figure 3 shows the setup of a thread block for row
filtering. Since all thread blocks work concurrently (from
the software perspective), we are left with the row-filtering
image in the global memory at the end of the previous
process. This image (in blocks) is loaded again in shared
memory, this time to perform column filtering. A thread
block does not transpose the column-ordered data since the
image block is small and it is not worth the effort. Thus,
this division of the image in blocks effectively avoids
transposing the entire image prior to column filtering.
 For row processing, the dimension of the thread block in
the x direction must be higher or equal than ⎣ ⎦2K
(effective size of the kernel). For the dimension in y
direction, any power of 2 is suitable as long as H is its
multiple. For column processing, the dimension of the
thread block in the y direction must be higher or equal than
⎣ ⎦2K . For the dimension in x direction, any power of 2 is
suitable as long as W is its multiple.
 The device utilized is a NVIDIA GeForce GTX465,
with 11x32 CUDA cores running at 607 MHz. There are 11
Streaming Multiprocessors that run at 1.215 GHz, each
with 32 CUDA cores. 1 GB of GDDR5 memory is
available and runs at 1603 MHz with a bandwidth of 102.6
GB/s. There are 48K bytes of shared memory per block.
The maximum power dissipation of the board is 200 W.
 The GPUs are tested in a desktop environment with an
Intel® Xeon W3520 running at 2.67 GHz, with 6GB of
DRAM. Our software configuration uses Windows 7
Ultimate (64-bits) with CUDA 3.2.

4. EXPERIMENTAL SETUP

This section details how the results were obtained. The set
of filters for our test are first described. Then we detail how
performance, energy, and accuracy were measured.

4.1. Set of filters for testing

To demonstrate the system, we consider a popular bandpass
filter implementation based on the Difference of Gaussians
(DOG) filter with 42 21 =σ=σ , [1]. For comparison, we
implement the DOG filter using 48 coefficients and double
precision arithmetic precision.

 The input image selected is the standard grayscale level
(8 bits) image ‘Lena’. Fig. 4 shows the ideal frequency
response of the filter with the input and output images.
 We consider 6 filter implementations, each with a
different number of coefficients (N = 8, 12, 16, 20, 24, 32).
In addition, we consider 3 different frame sizes: 640x480
(VGA), 352x288 (CIF), 176x144 (QCIF), derived from
cropped versions of ‘Lena’ (to preserve the frequencies).
This results in 18 filtered images.
 In the case of the FPGA implementation, the bit-width
of the coefficients is set at 16 bits. The row filter receives 8-
bit pixels at the input and outputs 16-bit pixels. The column
filter receives and outputs 16-bits pixels, taking advantage
of the symmetry of the filter [3].
 The system switches to a different 2D filter via DPR.
This is realized by reconfiguring a different row filter at
step 4 in Figure 2. Then, having streamed the image
through the new row filter, we load the respective column
filter at step 2. After that, we keep switching between these
new row and column filters. As a result, the PRR size is that
of largest column filter.
 In the case of the GPU implementation, the system is
implemented with double floating point numerical
precision, although it can be programmed with fixed-point.

4.2. Energy, performance, and accuracy measurements

We measure performance in terms of frames per second
(fps). In the case of the FPGA implementation, the
processing time per frame includes: i) row filtering process,
ii) column filtering process, iii) transposing row-filtered
image, and iv) PRR reconfiguration (twice). The
transposing of the row-filtered image occurs right after the
filtering of the rows is completed. Two reconfigurations are
needed per frame. Then, the performance (fps) is given by:

()reconfigtransposecolsrowsFPGA ttttfps ×+++= 21 (1)

 In the case of the GPU implementation, the processing
time per frame includes: i) Allocation of memory and data
transfer from host to device, ii) Frame processing, and iii)
data transfer from device to host. We run the filters 1000
times and get an average quantity of each of these times.

())hd(transfprocess)dh(transfallocGPU tttfps >−>−+ ++=1 (2)

 With regard to energy measurements, we consider the
energy consumption per frame.

p g
42 21 =σ=σ ,:DoG

N = 48

Figure 4. Frequency response – ideal filter with N = 48

Figure 3. Thread block configuration for row filtering

W

H y
di

m

x dim

Thread Block

shared
memory

constant
memory

K/2 coeffs

image block

extra pixels

365

 In the FPGA case, the power spent by the three Virtex-4
FPGA power sources (VCCINT, VCCAUX, VCCO) is
obtained, which amounts to the embedded system power
consumption. We use the Xilinx Power Analyzer (XPA)
tool that provides a more accurate estimate than the Xilinx
Power Estimator (XPE) because it is based on simulated
switching activity of the place-and-routed circuit [11]. Our
results are obtained with XPA at 25ºC. We get the power
drawn by both the row (rowP) and column filter (colP).
 Each filter variation amounts to a difference in resource
usage, and in turn in different power consumption.
However, the filter core is small compared to the rest of the
embedded system, so the power difference is not noticeable.
As a result, it is more useful to consider the power drawn
(both rowP and colsP) just by the FIR Filter IP core.
 The power consumption during reconfiguration is an
important quantity since the 2D FIR filter makes intensive
use of DPR. Unfortunately, there is no tool available that
can provide an estimate of this power consumption. In [12],
hardware measurements determined that only the
VCCAUX supply current increased during reconfiguration,
and it increased by 25 mA for the XC4VFX12 device. This
dynamic current does not depend on the device size, so we
use this current for our XC4VFX20 device. The
reconfiguration power then results:

()
() VCCAUXmAPP

VCCAUXmAPP

colcolreconfig

rowrowreconfig
×+=

×+=

−

−

25

25
 (3)

 Note that rowreconfigP − is the power during
reconfiguration of the row filter into a column filter.

colreconfigP − is defined in a analogous fashion.
 With the processing times of the row and column filter,
and the reconfiguration time, the energy per frame results:

() reconfigcolreconfigrowreconfig

colscolrowsrowFPGA
tPP

tPtPepf
×+

+×+×=

−−
 (4)

 In the case of the GPU implementation, similarly to [6],
the current is measured with the clamp sensor ESI 687 on
the power connectors. Both the external power of the GPU
and the power provided to the PCIe bus (20 W max.) are
considered. Note that we measure the power consumption
of the whole board that includes the GPU, memory, and
other components. The average power during the tasks is
measured, thus the energy per frame results:

())hd(transfprocess)dh(transfalloc

clampaverageGPU
ttt

Pepf

>−>−+

−

++

×=
 (5)

 Since the transferring and allocation times can be
considered as an offset any GPU implementation has to
deal with, we might also be interested in measuring the
energy per frame spent only during the processing stage:
 processclampaverageGPU tPepf ×= − (6)

Table 1. Embedded FIR Filtering system resource utilization
(Virtex-4 XCVFX20-11FF672)

Module Slice (%) FF (%) LUT %
PRR (col filter) 2125 25% 3680 21% 3812 22%
Static Region 4973 58% 5226 31% 5998 35%
Overall 7098 83% 8906 52% 9810 57%

 For accuracy measurements, we define accuracy as the
relative error between the FPGA or GPU processed frame
and the results using double precision with 48 coefficients.
Consequently, we measure accuracy using the PSNR
between the FPGA or GPU outputs and the double
precision implementation (48 coefficients). Here, note that
GPU implementation is also using double precision but
with variable number of coefficients. On the other hand, for
the FPGA, the error is due to truncation in the number of
coefficients and the use of fixed-point arithmetic (16 bits).

5. RESULTS

5.1. FPGA resource usage and reconfiguration time

The PRR must accommodate the largest filter (column filter
with N = 32). Thus, the PRR occupies a tightly packed area
of 21609024 =× Virtex-4 slices with a bitstream size of
183754 bytes. It takes about 25% of the FPGA fabric.
 Table 1 shows the hardware resource usage of the
embedded FIR filtering system of Figure 1. It reveals the
actual resource usage of the PRR and the static region. Note
that the largest column filter (N = 32) occupies 2125 Slices
(98% of the PRR Slices).
 A reconfiguration speed of 3.28 MB/s is obtained with
the Xilinx® ICAP core, resulting in 56.02 ms of
reconfiguration time for the given bitstream size.

5.2. Running times

In the FPGA case, rowst and colst are in line with the FSL
transfer speed of 226 Mbps reported in [2]. For example,
for N = 32, =rowst 10971, 3620, and 905 us for the VGA,
CIF, and QCIF frame sizes respectively. The number of
coefficients plays a negligible role in the processing time
because the FIR filter is a fully pipelined system in which
the number of coefficients only increments the register
levels, which in turn increases the initial latency of the
pipeline (that fades out for an input length larger than the
number of coefficients). This effect is usually masked by
the bus speed with bus cycles larger than the register levels
of the pipeline. System performance is limited by the time
spent in transposing the image (about 4152 us, 1453 us, and
379 us for the VGA, CIF, and QCIF frame sizes
respectively) and the reconfiguration time (about 56.02 ms).
 The reconfiguration time of 56.02 ms achieved with the
Xilinx® ICAP controller significantly limits real-time
system performance. With the use of the custom-made

366

Table 2. GPU running times (ms). N: number of coefficients

 N processt)dh(transfalloct >−+)hd(transft >−

64
0x

48
0

8 0.4099 2.0 1.9
12 0.4661 1.9 1.8
16 0.5096 2.0 1.6
20 0.5801 1.9 1.8
24 0.6481 1.9 1.9
32 0.7777 1.9 1.8

35
2x

28
8

8 0.2536 1.14 0.86
12 0.3031 1.12 0.94
16 0.3486 1.10 0.90
20 0.3527 1.40 0.75
24 0.3975 1.73 0.70
32 0.4610 1.40 0.60

17
6x

14
4

8 0.1998 0.60 0.30
12 0.2105 0.75 0.35
16 0.2371 0.60 0.30
20 0.2417 0.70 0.30
24 0.2729 0.80 0.30
32 0.2853 0.80 0.30

ICAP controller presented in [13], the reconfiguration time
would be 0.622 ms. For a good comparison with the
GPU, this reconfiguration time is used instead. Note that
the custom ICAP core has different power requirements
than the Xilinx® ICAP core. In practice, we expect the
power difference to be negligible since the custom ICAP
core is a small (and low-power) circuit.
 In the case of the GPU, we found that most of the time
is consumed by the allocation of memory and data transfers
from/to host to/from device. Table 2 shows these times.
 Note that)dh(transfalloct >−+ and)hd(transft >− are
about the same for a given frame size. Also, the processing
times do vary according to the number of coefficients,
unlike in the case of the FPGAs.

5.3. Power measurements

In the case of the FPGA, the power consumption is not
dependent upon the frame size. Thus, it makes sense to
report the result in terms of energy consumption per frame.
Table 3 shows that the embedded system’s power
fluctuations due to the number of coefficients are negligible
since only the filter IP core is modified. It is then more
meaningful to consider the power of the FIR Filter core
which does vary according to N (number of coefficients).
 Device static power does depend exclusively on the
device size and operating temperature, called ‘device static
power’ [11]. It is consumed by the device when it is
powered up and without programming the user logic. For
the XCVFX20 device, it amounts to 166 mW (all 3 voltage
rails), at 25 ºC. If the power results are to be meaningful
across different devices, this quantity must be considered as
an offset that will vary across devices.

Table 3. Embedded system Power consumption (Watts) on
the XCVFX20-11FF672 Virtex-4 FPGA

 rowsP colsP rowreconfigP − colreconfigP −
Mean 1.2410 1.2472 1.3035 1.3097

Std 0.0059 0.0140 0.0059 0.0140

 In the case of the GPU, we found that on average, it
consumes 96.8, 92.5, and 88 Watts for VGA, CIF, and
QCIF frame sizes respectively. Variations for different
number of coefficients are negligible (around 0.1 W) since
the algorithm uses the maximum number of cores
regardless of the number of coefficients of the filter. The
power fluctuations for different frame sizes are due to the
fact that for smaller frame sizes, the GPU is moving data
over a longer period of time than when it is processing.

5.4. Energy, Performance, and accuracy results

For comparing energy consumption, we only consider the
energy spent by the filtering process. Thus, for the FPGA,
we consider the energy consumed by the FIR filter and the
ICAP cores. For the GPUs, we will also consider the energy
spent during actual video processing (Equation. 6).
 Figure 5 shows the energy per frame, performance
(achieved frames per seconds) and accuracy results. Note
that in the case of performance, we report the mean fps with
its standard deviation for a given frame size. We observe an
energy dependence on the number of coefficients in the
FPGA case, although it is more pronounced in the GPU
case. In addition, the performance dependence on the
number of coefficients is negligible in the FPGA case, but
noticeable in the GPU case.
 In terms of PSNR (dB), the GPU gives better results due
to its use of double precision. However, there is no
significant difference at the output except for N = 32. In this
case, we have very high PSNR values that exceed 80dB.
 In terms of performance, the GPU always prevails due
to the massive amount of parallelization achieved in the
algorithm coupled with the high operating frequencies. The
speed up (GPU over FPGA) is about 9X, 5X, and 3.3X for
VGA, CIF, and QCIF frame sizes respectively. For smaller
frame sizes, the time consumed in allocations and transfers
is closer to the processing times.
 In terms of energy per frame, the FPGA implementation
is much better than the GPU. The GPU implementation
consumes 6, 9, and 19 times more energy than the FPGA’s
for VGA, CIF, and QCIF frame sizes respectively.
 Our results suggest that the FPGA implementation
provides a low-energy solution at near real-time
performance. Here, we refer to frame rates that are over 30
fps as achieving real-time performance. On the other hand,
when energy consumption is not an issue, the GPU
implementation is superior, delivering much higher
performance at slightly better accuracy.

367

6. CONCLUSIONS

This work successfully compares energy, performance (in
frames per second), and accuracy for both FPGA and GPU
implementations. Moreover, these 2 implementations allow
the user to modify the 2D FIR Filter at run-time. The results
indicate that separable 2D FIR filtering implementations
can deliver excellent accuracy for both the FPGAs and the
GPUs. However, based on energy consumption, FPGAs are
preferred for low-energy applications. On the other hand,
GPUs should be considered for high-performance, high-
power (high-energy) applications.

7. REFERENCES

[1] Alan Bovik ed., Handbook of Image and Video Processing.
Academic Press, 1st Edition, May 2000.

[2] D. Llamocca, M. Pattichis, and A. Vera, “A Dynamically
Reconfigurable Parallel Pixel Processing System”, in
Proceedings of the International Conference on Field
Programmable Logic and Applications FPL’2009, Prague,
Czech Republic, Sep. 2009.

[3] D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial
Reconfigurable FIR Filtering System using Distributed
Arithmetic”, International Journal of Reconfigurable
Computing, vol. 2010, Article ID 357978, 14 pages, 2010.

[4] D. Llamocca, M. Pattichis, “Real-time dynamically
reconfigurable 2-D filterbanks”, in Proceedings of the 2010
IEEE Southwest Symposium on Image Analysis &
Interpretation, Austin, TX, May. 2010.

[5] “Two-dimensional Linear Filtering (XAPP933) by Robert
Turney”, v1.1 ed., Xilinx Inc., 2100 Logic Drive, San Jose,
CA, 95124, Oct. 2007.

[6] S. Collange, D. Defour, A. Tisserand, “Power Consumption
of GPUs from a Software Perspective”, in Proceedings of
the 9th International Conference on Computational Science
(ICCS’09), pp.914-923, Springer, 2009.

[7] V. Podlozhnyuk, “Image Convolution with CUDA”,
NVIDIA, June 2007.

[8] Cope, B., Cheung, P.Y.K., Luk, W., Witt, S., “Have GPUs
made FPGAs redundant in the field of video processing?”, in
Proceedings of the 2005 IEEE International Conference on
Field Programmable Technology, pp. 111-118, Singapore,
Dec. 2005.

[9] Jones, D.H., Powell, A., Bouganis, C.-S., Cheung, P.Y.K.,
“GPU versus FPGA for High Productivity Computing”, in
Proceedings of the International Conference on Field
Programmable Logic and Applications FPL’2010, Milan,
Italy, Sep.2010.

[10] CUDA C Programming Guide, NVIDIA, v 3.2, Sept. 2010.

[11] Power Methodology Guide (UG786), Xilinx, San Jose, CA,
v13.1 edition, March 2011.

[12] G.A. Vera, “A dynamic arithmetic architecture: precision,
power, and performance considerations”, Ph.D.
Dissertation, University of New Mexico, Albuquerque, NM,
USA, May 2008.

[13] C. Claus et al, “A multi-platform controller allowing for
maximum dynamic partial reconfiguration throughput”, in
Proceedings of the International Conference on Field
Programmable Logic and Applications FPL’2008, pp. 535-
538, Heidelberg, Germany, Sept. 2008.

Figure 5. Performance, energy, and accuracy results for both FPGA and GPU. N: number of coefficients

102030405060708090
10

20

30

40

50

60

70

80
GPU Results

psnr(dB)

E
ne

rg
y

pe
r

fr
am

e
-

P
ro

ce
ss

in
g

st
ag

e
(m

J)

640x480

352x288

176x144

1020304050607080
0

2

4

6

8

10

12
FPGA results

psnr(dB)

E
ne

rg
y

pe
r

fr
am

e
-

F
IR

 c
or

e(
m

J)

640x480

352x288

176x144

N
 =

 3
2

N
 =

 2
4

N
 =

 2
0

N
 =

 1
6

N
 =

 1
2

N
 =

 8

N
 =

 3
2

N
 =

 2
4

N
 =

 2
0

N
 =

 1
6

N
 =

 1
2

N
 =

 8

fps (avg) = 26.2898, std = 0.0272

fps (avg) = 73.8375, std = 0.0616

fps (avg) = 231.2454, std = 0.6171

fps (avg) = 233, std = 7.1579

fps (avg) = 408, std = 11.9688

fps (avg) = 793.3516, std = 21.0552

368

