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ABSTRACT 

Digital video processing requires significant hardware 
resources to achieve acceptable performance. Digital video 
processing based on dynamic partial reconfiguration (DPR) 
allows the designers to control resources based on energy, 
performance, and accuracy considerations. 
 In this paper, we present a dynamically reconfigurable 
implementation of a 2D FIR filter where the number of 
coefficients and coefficients values can be varied to control 
energy, performance, and precision requirements. We also 
present a high-performance GPU implementation to help 
understand the trade-offs between these two technologies. 
 Results using a standard example of 2D Difference of 
Gaussians (DOG) filter indicate that the DPR 
implementation can deliver real-time performance with 
energy per frame consumption that is an order of magnitude 
less than the GPU. On the other hand, at significantly 
higher energy consumption levels, the GPU implementation 
can deliver very high performance. 

1. INTRODUCTION 

Hardware implementations of digital video processing 
methods are of great interest because of the ubiquitous 
applications. In terms of performance acceleration, many 
image and video processing algorithms require efficient 
implementation of 2D FIR filters [1]. 
 Dynamic partial reconfiguration (DPR) allows FPGA 
designers to explore different implementations based on 
energy, performance, and accuracy requirements. In 
addition to DPR, efficient filter implementations are based 
on the direct use of LUTs [2], the distributed arithmetic 
technique [3], and separable designs [4, 5]. 
 On the other hand, Graphic Processing Units (GPUs) 
offer high-performance floating point capabilities at 
significant energy consumption levels [6]. With the 
introduction of OpenCL and CUDA (Compute Unified 
Device Architecture), there has been a significant growth of 
GPU implementations; with [7] and [8] as examples of 2D 
FIR implementations. 
 . 

 In this paper, we are interested in exploring the energy, 
performance, and accuracy trade-offs between DPR FPGA 
and the corresponding GPU implementations. Some trade-
offs have been explored in [8] and [9]. Our goal is to 
provide recommendations for different implementations 
based on specific energy and performance requirements.  
 The paper is organized as follows: Section 2 describes 
the embedded filter implementation on the FPGA. Section 3 
details the GPU filter implementation. Section 4 explains 
the measurement setup for both implementations. Section 5 
presents the results in terms of Energy, performance, and 
accuracy. Finally, Section 6 summarizes the paper. 

2. 2D FIR FILTER SYSTEM ON THE FPGA 

We consider a 2D separable filtering implementation that is 
an extension of prior work presented in [3] and [4]. Here, 
we extend prior research to allow DPR of the entire FIR 
core, its FSL (Fast Simplex Link) bus interface, and the 
Partial Reconfiguration Region (PRR) control interface. 

2.1. System Architecture 

Figure 1 depicts the block diagram of the embedded 
system. The 1D FIR Filter processor core and the PowerPC 
(PPC) interact via the Fast Simplex Link (FSL) bus. The 
PRR is reconfigured via the internal configuration access 
port (ICAP). The Compact Flash (CF) card holds the partial 
bitstreams and input data. Bus macros are no longer needed 
in the Xilinx ISE 12.2 Partial Reconfiguration Tools. 
 In the context of the embedded system of Fig. 1 a 2D 
separable filter is realized by i) filtering the rows, ii) turning 
a row filter into a column filter via DPR, and iii) filtering 
the columns. Figure 2 depicts this scheme, where the 2D 
filter can be modified at run-time by using a different pair 
of row and column filters. 
 The filtered images (row and column-wise) are stored in 
the DDRRAM. The row-wise filtered image is transposed 
in the memory before it is streamed to the column filter. 
The system is implemented in the ML405 Xilinx Dev. 
Board that houses a XC4VFX20 Virtex-4 FPGA. The PPC 
is clocked at 300 MHz and the peripherals at 100 MHz. 
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2.2. 1D FIR filter core 

This fixed-point core is based on the one presented in [3]. 
We allow for full-reconfiguration, i.e. the entire filter is 
included in the PRR. Several modifications are introduced: 
 A new parameter ‘B’ allows the specification of the 

input data bit-width. This is different from the 
coefficients’ bit-width. 

 The frame size determines the input length of both the 
row and column filter. The input length is a parameter 
to the Finite State Machine (FSM) that controls the FSL 
interface. As a result, the FSL interface has to be 
included in the PRR (see Fig. 1). 

 An interface that disables the PRR outputs during 
reconfiguration is required since the PRR outputs now 
include FSL interface signals (shown in Fig. 1). 

 
Here, the 2D filter requires 2 bitstreams: one for the row 

filter and one for the column filter. The PRR must 
accommodate the largest filter. 

3. FILTER IMPLEMENTATION ON THE GPU 

We consider a parallel FIR algorithm implementation in the 
CUDA environment [10]. Here, parallelism is achieved by 
a grid that consists of blocks, with each block having a 
number of threads. All threads within a block are run in 
parallel from the software perspective. The actual number 
of blocks that can run in parallel is bounded by the number 
of streaming multiprocessors (SMs). Here, we can run a 
single block on each SM. Also, the number of threads that 
can be run in parallel at each SM is given by the number of 
CUDA cores inside each SM. 
 For the purposes of this paper, we will report energy 
and performance measurements on the GPU (termed the 
device) as opposed to the CPU (termed the host). Here, 
GPU memory is divided into global memory, shared 
memory, constant memory, and texture memory. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The algorithm exposes and exploits parallelism of the 
2D FIR filter in order to obtain significant speed up gains. It 
is based on ideas exposed in [7]. Double precision (64 bits) 
is utilized. The filter symmetry and its separability are taken 
advantage of. We summarize the algorithm steps below: 
1. The image and the filter kernel are transferred form the 

host to the device (global memory). 
2. The image is then divided into blocks. Each image 

block is filtered by a thread block by rows. 
3. The row-filtered image is also divided into blocks. 

Each image block is column- filtered by a thread block. 
4. The final filtered image is transferred to the host.  

 
 To further describe the algorithm, we let the input image 
to be of size HxW (H rows by W columns) and a filter 
kernel of size KxK (row and column filter of same length). 
We refer to [7] for more details on the separable 
implementation. Performance is achieved based on: i) loop 
unrolling, ii) storing image blocks in shared memory, and 
iii) storing the filtering coefficients in constant memory. 
 Each image block is processed as follows: It is first 
loaded to the shared memory (with extra ⎣ ⎦2K  pixels on 
both sides for correct filtering). Then, for row filtering, each 
thread inside a block performs a point-wise multiplication 
between the row kernel and a row portion of the image; and 
then adds up each product producing an output pixel. This 
process continues until the filtered image block is obtained.  
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Figure 2. 2D separable FIR filter implementation. 
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 Figure 3 shows the setup of a thread block for row 
filtering. Since all thread blocks work concurrently (from 
the software perspective), we are left with the row-filtering 
image in the global memory at the end of the previous 
process. This image (in blocks) is loaded again in shared 
memory, this time to perform column filtering. A thread 
block does not transpose the column-ordered data since the 
image block is small and it is not worth the effort. Thus, 
this division of the image in blocks effectively avoids 
transposing the entire image prior to column filtering. 
 For row processing, the dimension of the thread block in 
the x direction must be higher or equal than ⎣ ⎦2K  
(effective size of the kernel). For the dimension in y 
direction, any power of 2 is suitable as long as H is its 
multiple. For column processing, the dimension of the 
thread block in the y direction must be higher or equal than 
⎣ ⎦2K . For the dimension in x direction, any power of 2 is 
suitable as long as W is its multiple. 
 The device utilized is a NVIDIA GeForce GTX465, 
with 11x32 CUDA cores running at 607 MHz. There are 11 
Streaming Multiprocessors that run at 1.215 GHz, each 
with 32 CUDA cores. 1 GB of GDDR5 memory is 
available and runs at 1603 MHz with a bandwidth of 102.6 
GB/s. There are 48K bytes of shared memory per block. 
The maximum power dissipation of the board is 200 W. 
 The GPUs are tested in a desktop environment with an 
Intel® Xeon W3520 running at 2.67 GHz, with 6GB of 
DRAM. Our software configuration uses Windows 7 
Ultimate (64-bits) with CUDA 3.2. 

4. EXPERIMENTAL SETUP 

This section details how the results were obtained. The set 
of filters for our test are first described. Then we detail how 
performance, energy, and accuracy were measured.  

4.1. Set of filters for testing 

To demonstrate the system, we consider a popular bandpass 
filter implementation based on the Difference of Gaussians 
(DOG) filter with 42 21 =σ=σ ,  [1]. For comparison, we 
implement the DOG filter using 48 coefficients and double 
precision arithmetic precision. 

 
 
 
 
 
 
 
 
 
 The input image selected is the standard grayscale level  
(8 bits) image ‘Lena’. Fig. 4 shows the ideal frequency 
response of the filter with the input and output images. 
 We consider 6 filter implementations, each with a 
different number of coefficients (N = 8, 12, 16, 20, 24, 32). 
In addition, we consider 3 different frame sizes: 640x480 
(VGA), 352x288 (CIF), 176x144 (QCIF), derived from 
cropped versions of ‘Lena’ (to preserve the frequencies). 
This results in 18 filtered images. 
 In the case of the FPGA implementation, the bit-width 
of the coefficients is set at 16 bits. The row filter receives 8-
bit pixels at the input and outputs 16-bit pixels. The column 
filter receives and outputs 16-bits pixels, taking advantage 
of the symmetry of the filter [3]. 
 The system switches to a different 2D filter via DPR. 
This is realized by reconfiguring a different row filter at 
step 4 in Figure 2. Then, having streamed the image 
through the new row filter, we load the respective column 
filter at step 2. After that, we keep switching between these 
new row and column filters. As a result, the PRR size is that 
of largest column filter. 
 In the case of the GPU implementation, the system is 
implemented with double floating point numerical 
precision, although it can be programmed with fixed-point. 

4.2. Energy, performance, and accuracy measurements 

We measure performance in terms of frames per second 
(fps). In the case of the FPGA implementation, the 
processing time per frame includes: i) row filtering process, 
ii) column filtering process, iii) transposing row-filtered 
image, and iv) PRR reconfiguration (twice). The 
transposing of the row-filtered image occurs right after the 
filtering of the rows is completed. Two reconfigurations are 
needed per frame. Then, the performance (fps) is given by: 

( )reconfigtransposecolsrowsFPGA ttttfps ×+++= 21  (1) 

 In the case of the GPU implementation, the processing 
time per frame includes: i) Allocation of memory and data 
transfer from host to device, ii) Frame processing, and iii) 
data transfer from device to host. We run the filters 1000 
times and get an average quantity of each of these times. 

( ))hd(transfprocess)dh(transfallocGPU tttfps >−>−+ ++=1 (2) 

 With regard to energy measurements, we consider the 
energy consumption per frame. 

p g
42 21 =σ=σ ,:DoG

N = 48

Figure 4. Frequency response – ideal filter with N = 48 

Figure 3. Thread block configuration for row filtering 
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 In the FPGA case, the power spent by the three Virtex-4 
FPGA power sources (VCCINT, VCCAUX, VCCO) is 
obtained, which amounts to the embedded system power 
consumption. We use the Xilinx Power Analyzer (XPA) 
tool that provides a more accurate estimate than the Xilinx 
Power Estimator (XPE) because it is based on simulated 
switching activity of the place-and-routed circuit [11]. Our 
results are obtained with XPA at 25ºC. We get the power 
drawn by both the row  ( rowP ) and column filter ( colP ). 
 Each filter variation amounts to a difference in resource 
usage, and in turn in different power consumption. 
However, the filter core is small compared to the rest of the 
embedded system, so the power difference is not noticeable. 
As a result, it is more useful to consider the power drawn 
(both rowP  and colsP ) just by the FIR Filter IP core. 
 The power consumption during reconfiguration is an 
important quantity since the 2D FIR filter makes intensive 
use of DPR. Unfortunately, there is no tool available that 
can provide an estimate of this power consumption. In [12], 
hardware measurements determined that only the 
VCCAUX supply current increased during reconfiguration, 
and it increased by 25 mA for the XC4VFX12 device. This 
dynamic current does not depend on the device size, so we 
use this current for our XC4VFX20 device. The 
reconfiguration power then results: 

( )
( ) VCCAUXmAPP

VCCAUXmAPP

colcolreconfig

rowrowreconfig
×+=

×+=

−

−

25

25
        (3) 

 Note that rowreconfigP −  is the power during 
reconfiguration of the row filter into a column filter. 

colreconfigP −  is defined in a analogous fashion. 
 With the processing times of the row and column filter, 
and the reconfiguration time, the energy per frame results: 

( ) reconfigcolreconfigrowreconfig

colscolrowsrowFPGA
tPP

tPtPepf
×+

+×+×=

−−
        (4) 

 In the case of the GPU implementation, similarly to [6], 
the current is measured with the clamp sensor ESI 687 on 
the power connectors. Both the external power of the GPU 
and the power provided to the PCIe bus (20 W max.) are 
considered. Note that we measure the power consumption 
of the whole board that includes the GPU, memory, and 
other components. The average power during the tasks is 
measured, thus the energy per frame results: 

( ))hd(transfprocess)dh(transfalloc

clampaverageGPU
ttt

Pepf

>−>−+

−

++

×=
  (5) 

 Since the transferring and allocation times can be 
considered as an offset any GPU implementation has to 
deal with, we might also be interested in measuring the 
energy per frame spent only during the processing stage: 
  processclampaverageGPU tPepf ×= −       (6) 

Table 1. Embedded FIR Filtering system resource utilization 
(Virtex-4 XCVFX20-11FF672) 

Module Slice (%) FF (%) LUT % 
PRR (col filter) 2125 25% 3680 21% 3812 22% 
Static Region 4973 58% 5226 31% 5998 35% 
Overall 7098 83% 8906 52% 9810 57% 

 
 For accuracy measurements, we define accuracy as the 
relative error between the FPGA or GPU processed frame 
and the results using double precision with 48 coefficients. 
Consequently, we measure accuracy using the PSNR 
between the FPGA or GPU outputs and the double 
precision implementation (48 coefficients). Here, note that 
GPU implementation is also using double precision but 
with variable number of coefficients. On the other hand, for 
the FPGA, the error is due to truncation in the number of 
coefficients and the use of fixed-point arithmetic (16 bits). 

5. RESULTS 

5.1. FPGA resource usage and reconfiguration time 

The PRR must accommodate the largest filter (column filter 
with N = 32). Thus, the PRR occupies a tightly packed area 
of 21609024 =×  Virtex-4 slices with a bitstream size of 
183754 bytes. It takes about 25% of the FPGA fabric. 
 Table 1 shows the hardware resource usage of the 
embedded FIR filtering system of Figure 1. It reveals the 
actual resource usage of the PRR and the static region. Note 
that the largest column filter (N = 32) occupies 2125 Slices 
(98% of the PRR Slices). 
 A reconfiguration speed of 3.28 MB/s is obtained with 
the Xilinx® ICAP core, resulting in 56.02 ms of 
reconfiguration time for the given bitstream size. 

5.2. Running times 

In the FPGA case, rowst  and colst  are in line with the FSL 
transfer speed of 226 Mbps reported in [2]. For example, 
for N = 32, =rowst  10971, 3620, and 905 us for the VGA, 
CIF, and QCIF frame sizes respectively. The number of 
coefficients plays a negligible role in the processing time 
because the FIR filter is a fully pipelined system in which 
the number of coefficients only increments the register 
levels, which in turn increases the initial latency of the 
pipeline (that fades out for an input length larger than the 
number of coefficients). This effect is usually masked by 
the bus speed with bus cycles larger than the register levels 
of the pipeline. System performance is limited by the time 
spent in transposing the image (about 4152 us, 1453 us, and 
379 us for the VGA, CIF, and QCIF frame sizes 
respectively) and the reconfiguration time (about 56.02 ms). 
 The reconfiguration time of 56.02 ms achieved with the 
Xilinx® ICAP controller significantly limits real-time 
system performance. With the use of the custom-made
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Table 2. GPU running times (ms). N: number of coefficients 

 N processt  )dh(transfalloct >−+  )hd(transft >−  

64
0x

48
0 

8 0.4099 2.0 1.9 
12 0.4661 1.9 1.8 
16 0.5096 2.0 1.6 
20 0.5801 1.9 1.8 
24 0.6481 1.9 1.9 
32 0.7777 1.9 1.8 

35
2x

28
8 

8 0.2536 1.14 0.86 
12 0.3031 1.12 0.94 
16 0.3486 1.10 0.90 
20 0.3527 1.40 0.75 
24 0.3975 1.73 0.70 
32 0.4610 1.40 0.60 

17
6x

14
4 

8 0.1998 0.60 0.30 
12 0.2105 0.75 0.35 
16 0.2371 0.60 0.30 
20 0.2417 0.70 0.30 
24 0.2729 0.80 0.30 
32 0.2853 0.80 0.30 

 
ICAP controller presented in [13], the reconfiguration time 
would be 0.622 ms. For a good comparison with the 
GPU, this reconfiguration time is used instead. Note that 
the custom ICAP core has different power requirements 
than the Xilinx® ICAP core. In practice, we expect the 
power difference to be negligible since the custom ICAP 
core is a small (and low-power) circuit. 
 In the case of the GPU, we found that most of the time 
is consumed by the allocation of memory and data transfers 
from/to host to/from device. Table 2 shows these times. 
 Note that )dh(transfalloct >−+  and )hd(transft >−  are 
about the same for a given frame size. Also, the processing 
times do vary according to the number of coefficients, 
unlike in the case of the FPGAs. 

5.3. Power measurements 

In the case of the FPGA, the power consumption is not 
dependent upon the frame size. Thus, it makes sense to 
report the result in terms of energy consumption per frame. 
Table 3 shows that the embedded system’s power 
fluctuations due to the number of coefficients are negligible 
since only the filter IP core is modified. It is then more 
meaningful to consider the power of the FIR Filter core 
which does vary according to N (number of coefficients). 
 Device static power does depend exclusively on the 
device size and operating temperature, called ‘device static 
power’ [11]. It is consumed by the device when it is 
powered up and without programming the user logic. For 
the XCVFX20 device, it amounts to 166 mW (all 3 voltage 
rails), at 25 ºC. If the power results are to be meaningful 
across different devices, this quantity must be considered as 
an offset that will vary across devices.  

Table 3. Embedded system Power consumption (Watts) on 
the XCVFX20-11FF672 Virtex-4 FPGA 

 rowsP  colsP  rowreconfigP −  colreconfigP −  
Mean 1.2410 1.2472 1.3035 1.3097 

Std 0.0059 0.0140 0.0059 0.0140 
 
 In the case of the GPU, we found that on average, it 
consumes 96.8, 92.5, and 88 Watts for VGA, CIF, and 
QCIF frame sizes respectively. Variations for different 
number of coefficients are negligible (around 0.1 W) since 
the algorithm uses the maximum number of cores 
regardless of the number of coefficients of the filter. The 
power fluctuations for different frame sizes are due to the 
fact that for smaller frame sizes, the GPU is moving data 
over a longer period of time than when it is processing. 

5.4. Energy, Performance, and accuracy results 

For comparing energy consumption, we only consider the 
energy spent by the filtering process. Thus, for the FPGA, 
we consider the energy consumed by the FIR filter and the 
ICAP cores. For the GPUs, we will also consider the energy 
spent during actual video processing (Equation. 6). 
 Figure 5 shows the energy per frame, performance 
(achieved frames per seconds) and accuracy results. Note 
that in the case of performance, we report the mean fps with 
its standard deviation for a given frame size. We observe an 
energy dependence on the number of coefficients in the 
FPGA case, although it is more pronounced in the GPU 
case. In addition, the performance dependence on the 
number of coefficients is negligible in the FPGA case, but 
noticeable in the GPU case. 
 In terms of PSNR (dB), the GPU gives better results due 
to its use of double precision. However, there is no 
significant difference at the output except for N = 32. In this 
case, we have very high PSNR values that exceed 80dB.  
 In terms of performance, the GPU always prevails due 
to the massive amount of parallelization achieved in the 
algorithm coupled with the high operating frequencies. The 
speed up (GPU over FPGA) is about 9X, 5X, and 3.3X for 
VGA, CIF, and QCIF frame sizes respectively. For smaller 
frame sizes, the time consumed in allocations and transfers 
is closer to the processing times. 
 In terms of energy per frame, the FPGA implementation 
is much better than the GPU. The GPU implementation 
consumes 6, 9, and 19 times more energy than the FPGA’s 
for VGA, CIF, and QCIF frame sizes respectively.  
 Our results suggest that the FPGA implementation 
provides a low-energy solution at near real-time 
performance. Here, we refer to frame rates that are over 30 
fps as achieving real-time performance. On the other hand, 
when energy consumption is not an issue, the GPU 
implementation is superior, delivering much higher 
performance at slightly better accuracy. 
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6. CONCLUSIONS 

This work successfully compares energy, performance (in 
frames per second), and accuracy for both FPGA and GPU 
implementations. Moreover, these 2 implementations allow 
the user to modify the 2D FIR Filter at run-time. The results 
indicate that separable 2D FIR filtering implementations 
can deliver excellent accuracy for both the FPGAs and the 
GPUs. However, based on energy consumption, FPGAs are 
preferred for low-energy applications. On the other hand, 
GPUs should be considered for high-performance, high-
power (high-energy) applications. 

7. REFERENCES 

[1] Alan Bovik ed., Handbook of Image and Video Processing. 
Academic Press, 1st Edition, May 2000. 

[2] D. Llamocca, M. Pattichis, and A. Vera, “A Dynamically 
Reconfigurable Parallel Pixel Processing System”, in 
Proceedings of the International Conference on Field 
Programmable Logic and Applications FPL’2009, Prague, 
Czech Republic, Sep. 2009. 

[3] D. Llamocca, M. Pattichis, and G. Alonzo Vera, “Partial 
Reconfigurable FIR Filtering System using Distributed 
Arithmetic”, International Journal of Reconfigurable 
Computing, vol. 2010, Article ID 357978, 14 pages, 2010. 

[4] D. Llamocca, M. Pattichis, “Real-time dynamically 
reconfigurable 2-D filterbanks”, in Proceedings of the 2010 
IEEE Southwest Symposium on Image Analysis & 
Interpretation, Austin, TX,  May. 2010. 

[5] “Two-dimensional Linear Filtering (XAPP933) by Robert 
Turney”, v1.1 ed., Xilinx Inc., 2100 Logic Drive, San Jose, 
CA, 95124, Oct. 2007. 

[6] S. Collange, D. Defour, A. Tisserand, “Power Consumption 
of GPUs from a Software Perspective”, in Proceedings of 
the 9th International Conference on Computational Science 
(ICCS’09), pp.914-923, Springer, 2009. 

[7] V. Podlozhnyuk, “Image Convolution with CUDA”, 
NVIDIA, June 2007. 

[8] Cope, B., Cheung, P.Y.K., Luk, W., Witt, S., “Have GPUs 
made FPGAs redundant in the field of video processing?”, in 
Proceedings of the 2005 IEEE International Conference on 
Field Programmable Technology, pp. 111-118, Singapore, 
Dec. 2005. 

[9] Jones, D.H., Powell, A., Bouganis, C.-S., Cheung, P.Y.K., 
“GPU versus FPGA for High Productivity Computing”, in 
Proceedings of the International Conference on Field 
Programmable Logic and Applications FPL’2010, Milan, 
Italy, Sep.2010. 

[10] CUDA C Programming Guide, NVIDIA, v 3.2, Sept. 2010. 

[11] Power Methodology Guide (UG786), Xilinx, San Jose, CA, 
v13.1 edition, March 2011. 

[12] G.A. Vera, “A dynamic arithmetic architecture: precision, 
power, and performance considerations”, Ph.D. 
Dissertation, University of New Mexico, Albuquerque, NM, 
USA, May 2008. 

[13] C. Claus et al, “A multi-platform controller allowing for 
maximum dynamic partial reconfiguration throughput”, in 
Proceedings of the International Conference on Field 
Programmable Logic and Applications FPL’2008, pp. 535-
538, Heidelberg, Germany, Sept. 2008. 

 

Figure 5. Performance, energy, and accuracy results for both FPGA and GPU. N: number of coefficients 
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