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Abstract—Compaction by optimal permutation (COPERM) is
a tool for transform-domain energy compaction of broadband
signals, whose foundation is a simple but powerful idea: Any
signal can be transformed to resemble a more desirable (e.g.,
from a transform-domain compaction viewpoint) signal from a
class of “target” signals (e.g., DCT basis functions) by means of a
suitable permutation of its samples. One application of transform-
domain energy compaction is in lossy compression. We pursue
one possible thread in detail and demonstrate some interesting
broadband image compression results.

Index Terms—Broadband image compression, coding, energy
compaction, permutation, textures.

I. INTRODUCTION

T HIS PAPER presents a new tool for transform-domain
energy compaction of broadband signals based on a

least squares permutation approach. Some basic theoretical
results set the stage for the development of fast computational
algorithms, which are exemplified in several experiments using
a variety of broadband signals. These experiments demonstrate
that the energy compaction afforded by COPERM is very
significant—very few coefficients are usually sufficient to
represent the compacted signal in the transform domain.

One application of transform-domain energy compaction
is in lossy compression. The simplest way to compress a
narrowband signal is to truncate its spectrum down to a few
significant coefficients; the loss is small if the signal is suf-
ficiently narrowband. In this context, the energy-compacting
permutation carries most of the coding load as well as the
coding cost. This approach will be shown to be fruitful for
sufficiently broadband signals and images.
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Energy compaction is an important first step in almost all
lossy compression techniques. Typical examples include the
differencing step in adaptive differential pulse code modulation
(ADPCM) or the prediction step in predictive PCM [1] and
applying an energy-compacting transform, like DCT, as in
JPEG [2], [3]. Prediction and/or transformation to some other
more suitable domain are the two prevailing techniques for
energy compaction. The former compacts most of the energy
of the signal to be encoded in a relatively narrow range
of amplitudes; the latter compacts most of the energy of
the signal in a relatively narrow range of “frequencies” or,
in general, transform coefficients. Both work well when the
signal to be encoded is relatively smooth to begin with but
are not very efficient in compacting the energy of persistent
broadband signals. These signals occupy a wide bandwidth in
the frequency domain and exhibit fast and persistent variation
in the time domain. The purpose of this paper is to propose
a new tool for energy compaction of broadband signals via
optimal permutation. This permutation is matched to a given
transform domain in the sense that its goal is to produce a
permuted signal that resembles one of the associated basis
functions as closely as possible in a least squares (LS) sense.

The idea of using permutations for (standalone) source
coding has been investigated in the mid 1960’s to early 1980’s
by Bergeret al. [4]–[6]. This and other related work [7]–[10]
is reviewed in the sequel (Section III). The idea of using a
globally optimal permutation for effective transform-domain
energy compaction of broadband signals is a contribution of
this paper.

A. Organization

This paper is structured as follows. The main idea is intro-
duced by example in Section II, which also contains some key
results. Section III puts the main idea in perspective, connects
with prior related work, and discusses some alternatives.
Section IV describes an application of COPERM in broadband
image compression, including several examples and a detailed
discussion of results. Section VI summarizes current findings
and presents some concluding remarks.

II. M AIN IDEA

We introduce the main idea using the discrete Fourier
transform (DFT). The DFT is closely related to the discrete
Cosine transform (DCT), which is heavily used as a prepro-
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cessing energy-compaction block in many transform-domain
codecs, like JPEG [2], [3]. These codecs also incorporate
quantization and entropy encoding blocks. We temporarily
leave these blocks out of consideration (although they too can
be accounted for) and focus on energy compaction.

What is the best possible DFT input signal from an energy
compaction viewpoint? Clearly, it is1 one of the given DFT
basis signals. Many real-life signals are smooth, thus having
most of their energy in the lowpass band of the spectrum;
the DFT is quite effective in compacting the energy of such
signals. Actually, it is quite effective in compacting the energy
of any narrowband signal, regardless of whether it is lowpass
or bandpass.

The flip side of this is that the DFT is a poor choice for
compacting the energy of broadband signals, e.g., textures, fin-
gerprints, noise, fractals, or certain digital modulation signals.
Given such a broadband signal, we would like to transform
it such that

• the transformed signal is as narrowband as possible:
ideally, one of the given DFT basis functions;

• the associated transformation isinvertibleso that we may
recover the original signal from the transformed signal;

• the forward and inverse transforms are easy toconstruct,
apply, and represent.

For the sake of simplicity, and without loss of generality,
let us temporarily restrict our attention to so-calledconstant
modulus signals. These are complex-valued signals whose
magnitude remains constant over time, and only their angle
changes. A constant modulus signal is any signal that can be
written as , where

constant;
real-valued function;
square root of 1.

Note that theangle functionof is not but rather
modulo The reason for temporarily restricting ourselves
to this class of signals is not technical but pedagogical: It
allows us to make the first argument using the discrete Fourier
transform, which is a very familiar tool.

Fig. 1(a) depicts the angle function of a broadband constant-
modulus signal, Fig. 1(d) depicts the magnitude of the DFT
of this signal, and Fig. 1(e) depicts the magnitude of the
DFT of a suitable permutation of the given constant-modulus
signal: Notice that the permuted signal essentially consists of
a single DFT harmonic (there exist a few more negligible but
nonzero DFT coefficients that are not visible in this plot).
Fig. 1(b) depicts the angle function of the reconstructed signal
obtained by setting all negligible DFT coefficients of the
permuted signal to zero, computing the inverse DFT, and then
depermuting using the inverse permutation. This effectively
recreates the angle function of the original constant-modulus
signal. Fig. 1(c) depicts the error between the angle functions
of the original signal and the reconstructed signal [the signal-
to-noise ratio (SNR) is about 100 dB].

Of course, from a compression standpoint, we have to
consider the cost of storing not only the compacted trans-
form (one complex number in this case) but the associated

1Modulo scaling by a (potentially complex) number, of course.

Fig. 1. x(n) = e
j(2�=N)(1+3n�2n +12n �n )

:

permutation as well. There exist possible permutations of
a length- signal—meaning that bits are generally
required to represent an arbitrary length-signal permutation.
This is slightly better than [or bits per
signal sample]. Thus, it appears that should not be too
big (actually, if the signal is digital, then should be
strictly less than the number of bits used to represent a signal
sample in order to achieve any compression gain at all). On
the other hand, should not be too small; otherwise, even
the optimal matching is often not very accurate in absolute
terms. It appears, then, that the choice of exhibits an
interesting (and unusual) tradeoff. However, as we will see
later in Section IV, there is an elegant way to circumvent the
restriction of having to work with relatively small , even
for digital data.

How do we find such asuitablepermutation?
Recall that the sought transformation should ideally trans-

form the given signal to a DFT basis function. In general, if
we insist on perfect transformation to a basis function, then
the transform cannot simultaneously be invertible as well as
easy to construct, apply, and represent. In particular, if we
restrict our attention to permutations, then we cannot insist on
exact transformation because there exist signals that cannot be
synthesized by permutation of a DFT basis function. It seems
natural, then, to pose the following problem.

Given a constant modulus signal, find a permutation that
best matches the angle function of the permuted signal to
the angle function ofsomeDFT basis signal, i.e., one that
best matches the angle function of the permuted signal
to mod for the best possible

in an LS sense.

Let us use the letters to denote permutations of the in-
tegers in , i.e,

is a permutation of for some fixed
Let be the group of all such permutations

In concise mathematical terms, we have the following.
Problem 1: Given the angle function of a constant
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element modulus input signal, find

(1)

Notice that in terms of the data sequence , this is not
a projection problem— need not be a permutation
of some mod but rather asclose to some

mod as possible.
In solving this optimization, the following general theorems

are key.

A. Key Theorems

Given a real-valued sequence of length , we will
say that is a sorting permutationfor if the sequence

is sorted in increasing order (sorting permutations are
not necessarily unique because of the possible existence of
ties: Two or more elements may have exactly the same value).

Theorem 1 [4, Th. 1]:Given two real-valuedsequences of
length and , consider the following problem:

Let be sorting permutations for , respectively.
Then, an optimum is given by

Proof: This result is [4, Th. 1] with a minor modification:
In [4], one of the two sequences is already sorted. The outline
is as follows. Let An optimum as
postulated above registers the smallest value in with the
smallest value in , and then, the second smallest value
in with the second smallest value in , and so on.
No other permutation can be better. To see this, consider any
sequence induced by a permutation that does not register
the values as postulated above. Then, it is possible to find two
indices, say , such that , but
Then, a simple swap of would reduce the squared
error, and thus, the sequence induced by the permutation is not
optimal. This can be easily seen by enumerating the (six) total
orderings that are consistent with the constraints

Remark 1: Sorting is, at worst, an operation
[11]; hence, an optimum can be found in
operations.

It is now clear how to solve the optimization problem in
(1): For fixed , invoke the above theorem to solve for the
best for the given This takes operations.
Repeat for all different ’s, and pick the best such (for
the best ) as the final answer. The overall process entails

operations.
Remark 2: Given that problems involving optimization

over the permutation group are typically intractable [12], it
is quite refreshing that our particular formulation (Problem
1) is not.

Later on, we will explain how we may reduce this figure
to without significant performance loss while
at the same time significantly reducing the cost of storing the
associated optimal permutation.

For finite-alphabet sequences, there exist more efficient
sorting algorithms, likebinsort , which is2 instead
of (the latter figure is also a worst-case lower
bound for arbitrary real-valued data) [11]. As a result, the
complexity of the overall process can be reduced to
for finite-alphabet sequences. Furthermore, there exists an
interesting alternative to Theorem 1 for the special case of
finite-alphabet sequences. This is explored next.

Theorem 2: Consider two finite-alphabet sequences of
length : and Assume that the alphabets are fixed
and known in advance [this can always be assumed for the
“target” sequence ]. Let and be the histograms
of the two sequences over the respective alphabets, and

(i.e., equal to the size
of the largest alphabet). Then

and can be computed from and in operations.
Proof: From Theorem 1, the sought minimum is the

squared Euclidean distance between the sorted sequences.
Given a histogram, the computation of the associated sorted
sequence is trivial; the same holds for the inverse operation. It
remains to be shown that can actually be computed from

and in [instead of a “naive” (for ]
operations. A simple algorithm would be as follows:

Algorithm 1:

make a copy of the histograms; initialize to 0;
repeat until all data are consumed:

increment each of until and ;
if then

* ;
;

else
* ;

;

where returns the value corresponding to its argu-
ment in the alphabet associated with the sequence and
similarly for ; the resulting equals

Remark 3: Of course, calculating the histogram of the input
sequence is an operation; thus, the fact that can
actually be computed from and in [instead
of ] operations is of little utility when we are given

instead of and is only interested in computing
for just one It is when we need to compareseveral

2Provided the alphabet is fixed and known in advance [11].binsort is
also known ascounting-sort .
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Fig. 2. x(n) = e
j(2�=N)(�n +1+3n�2n +12n )

:

candidate target sequences that the benefit afforded by
this theorem becomes apparent.

In light of this latter theorem, an alternative approach
emerges: Given a finite-alphabet input sequence and a number
of target sequences, find the best target sequence by i) comput-
ing the histogram of the input sequence in operations
(the corresponding computation for the target sequences need
only be doneonceandoff-line) and ii) selecting the best target
sequence by computing the associatedmetrics, as above,
at a complexity cost of operations each. In the end, we
only needonesorting to find the optimum match. This being
a finite-alphabet sorting operation, it follows that the overall
runtime complexity of this process is

operations, where is the number of target
sequences, and is maximum alphabet size. This would be
beneficial for small relative to

Notice that Theorem 1 provides the means to match two
real-valued signals in the time domain by means of an optimal
(in the LS sense) permutation. In the context of transform-
domain coding, we would actually like to match the two
signals in the specified transform domain. At first glance,
the problem may appear tougher in the transform domain.
For linear orthogonal transforms, however, LS matching-by-
permutation in the time domain is equivalent to LS matching-
by-permutation in the transform domain. Consider, for ex-
ample, a real-valued sequence of length , where we
let

: its vector representation;
: forward DFT matrix;
: permutation matrix;
: a desired spectrum.

Let stand for squared Euclidean norm and stand
for Hermitian transpose. Then,

by virtue of Parseval’s Theorem.

B. Some Further Examples

Further examples are shown in Figs. 2(a)–(f) and 3(a)–(f),
following the same format as Fig. 1. As in the first exam-

Fig. 3. x(n) = e
j(2�=N)(�(n)+36)

: �(�) is the gamma function.

Fig. 4. x(n) = a realization of a zero-mean, unit-variance white Gaussian
process.

ple, just one (the strongest) DFT coefficient is sufficient to
adequately represent the optimally permuted signal.

All examples so far involved the DFT and constant modulus
signals, for which the optimal permutation was found by
matching the angle function of the permuted signal to the angle
function of the best possible DFT basis function in a LS sense.
Of course, Theorem 1 is general, and, for real-valued signals,
it can be applied to match the permuted signal itself to some
other prescribed signal, or collection of signals, in an LS sense.

For real-valued signals, the DCT is often the transform of
choice (e.g., [2] and [3]). Fig. 4(a)–(f) shows the result of
applying Theorem 1 to a realization of a standard zero-mean,
unit-variance white Gaussian process. The goal is to match
the permuted signal to a DCT basis function in an LS sense.
Fig. 4 follows the same presentation format as earlier figures.
The differences here are as follows.

i) .
ii) We use 100 DCT coefficients to approximate the com-

pacted DCT of the permuted signal.
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iii) Only the first 128 samples of the original, reconstructed,
and error signals are shown to facilitate reader appre-
ciation of the quality of reconstruction.

III. PERSPECTIVE, PRIOR WORK, AND

ALTERNATIVES IN A BROADER CONTEXT

Permutation codesare a class of codes that were introduced
by Slepian [13] for reliably transmitting digital data over
noisy communication channels. Permutation source codes were
developed by Bergeret al. [4]–[6], who made important
contributions to the theory of permutation codes (see also
Dunn [14]). The basic idea of permutation coding (as applied
to the case of source coding) can be compactly stated as
follows. We start with a basic “mother” codeword, which
induces an associated codebook consisting of all distinct
permutations of the mother codeword. Optimum encoding
(and, in the case of channel coding, maximum likelihood
decoding) is greatly simplified by Theorem 1. Given an
input vector, the selected codeword is the permutation of the
mother codeword that best matches the given input in a LS
sense. This codeword is easily found by invoking Theorem
1. Relative to permutation source coding, COPERM has a
different goal, namely, to create a narrowband signal in the
DFT/DCT domain. Coupled with, e.g., simple truncation of
the resulting narrowband spectrum, COPERM can be used to
construct a compression algorithm. Such an algorithm may
provide a more refined signal representation compared with
permutation source coding, which represents the input using
a single permutation of the mother codeword, which is the
equivalent of using only the “carrier frequency.”

A permutation of signal samples followed by the regular
DFT is a discrete FM transform (DFMT) [15]–[17], and
signal-dependent optimization of the permutation with the
goal of obtaining a narrowband spectrum can be viewed as
a signal-adaptive DFMT. The time-domain counterpart of this
idea is to permute signal samples to minimize the sum of
squared pairwise temporal differences. For real-valued signals,
this amounts to a sorting permutation, and a variation of
this idea has been explored by Neagoe [7], who proposed a
predictive ordering/linear approximation technique for image
data compression.

The idea of using a signal-adaptive block transform to
enhance energy compaction and signal compression perfor-
mance is not new, e.g., Caglaret al. [8] advocate using
a bank of such transforms, generated by stacking signed
permutations of signal centroid vectors. Relative to COPERM,
the above approach employs a small number (e.g., 8) of signed
permutations of a given centroid vector, and these are chosen
to guaranteeorthogonality of the resulting transform matrix
instead of matching the input signal to a DFT/DCT basis
function in a LS sense.

We may view a permutation of the elements of a raster-
scanned vector of image samples as ascan order: an alternative
(i.e., other than the given raster-scan) way of visiting the given
collection of data points. The idea of using better scan orders
to improve on prediction accuracy is quite old; the survey
paper [9] provides a good recent summary of prior work in

this direction. Work on alternative scan orders has focused on
local scan orders and prediction-error estimates as a measure
of goodness. Selection of the best scan order is accomplished
either by exhaustive search or by minimum weight spanning
tree (MST) algorithms. In contrast, our proposed technique
focuses on global and globally optimum permutations, and the
measure of goodness is Euclidean distance of the permuted
signal from some prescribed (family of) target signal(s).

In a recent paper [10], Arnavut discusses an interesting
approach to lossless image compression: treating the image
as amultiset permutationand using a Lehmer inversion/image
histogram representation of the image data. The Lehmer inver-
sion vector typically has lower sample entropy than the image
vectorper se, and this facilitates lossless compression.

IV. A PPLICATION IN BROADBAND

SIGNAL/IMAGE COMPRESSION

When using COPERM for DFT/DCT domain energy com-
paction in the context of lossy signal compression, the cost of
coding the associated permutation and the cost of searching
for the optimal permutation should be kept as low as possible.
One way to contain the cost of coding the permutation is to
exploit the inherentperiodicity of DFT/DCT basis functions
in the time domain.

Let us illustrate this point by focusing on the DFT basis
function for This function is simply a binary
oscillation: When sorted, it gives two “buckets.” Any
sample of the original sequence may fall inone of the
two buckets; exactly where it falls within a given bucket is
irrelevant in terms of LS fit. Consequently, a single bit index
per signal sample is sufficient to determinean optimal signal
permutation for the given Stated another way, for ,
there exist only distinct equivalence classes (with respect
to LS fit) of permutations out of a total of [essentially

] permutations; thus, bits [instead of
bits] are sufficient to represent the optimal permutation. We
may decide on a class representative in an arbitrary fashion,
provided it is consistent and known to both the encoder and
the decoder. We simply sort indices that fall in the same
bucket in increasing order. The decoder uses this convention
to reconstruct the encoded permutation from its “bucketed”
representation.

Similar (but smaller) savings can be realized for
In general, we need bits per signal

sample to represent an optimal permutation for
We restrict our attention to thesedyadic

frequenciesonly. Of course, a similar argument can be made
for the DCT, and we employ the 1-D DCT in the sequel.

According to Theorem 2, the best target frequencyis
the one whose associated sample histogram is closest (in
the LS sense) to the histogram of the signal at hand. Many
broadband signals exhibitlevel diversity, meaning that smaller
target frequencies (which also exhibit higher sample level
diversity) tend to provide better energy compaction. The flip
side is that smaller lead to higher , i.e., more bits
to code the permutation. One way to resolve this tradeoff is
to pick the smallest we can afford under a rate constraint
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Fig. 5. COPERM-DCT encoder block diagram.

and then truncate the resulting narrowband spectrum down
to a small fixed number of most significant coefficients. This
approach is simple and fast (no frequency search), and it works
very well for broadband signals that exhibit level diversity.

Fig. 5 presents the resulting COPERM-DCT coder in block
diagram form. The input image is raster scanned to produce
a long vector of length ( is assumed to be a power of
2). is selected to be the smallest power of two for which

, which is a user-specified rate constraint.
Typical values of are resulting in 1–3
bits/sample of “raw” permutation coding overhead (this can
be subsequently reduced by entropy coding). Letbe a
permutation that sorts [ is a byproduct of
is sorted in increasing order]. is partitioned into length-

sub-blocks (“buckets”). Each of these sub-blocks is sorted in
increasing order, in accordance with our earlier discussion and
associated convention, and the result is stored inLet be
a permutation that sorts theth (1-D) DCT basis function (
can be precomputed). Note thatis as good as in matching
the permuted signal to the sorted samples of theth DCT basis
function. Applying to gives the total permutation

This is a permutation that best matches the input to the
th DCT basis function. A bucketed representation of

is then derived according to
Note that given our intra-bucket sorting

convention, allows complete recovery of (and therefore
), yet its samples take values in , thus

requiring b/sample to represent.
The input vector is permuted using and transformed

using DCT. A small user-specified number (e.g., 100) of most
significant (strongest) DCT coefficients are selected and stored
as (frequency, coefficient) pairs—the coefficient part being
stored in 32-b floating-point representation. This information,
along with the bucketed permutation representation, plus
header information (image size, bit depth, , etc.) is
stored in a file, which is subsequently processed by a loss-
less entropy coder (gzip in our particular implementation).
Encoder complexity is Recall that image
rows image columns so that can be big; however, the
two basic operations involved are i) sorting and ii) DCT; both
can be very efficiently implemented. We provide actual timing
results in the next section.

The decoder inverts the entropy coding step (gunzip in our
implementation), recovers from and from , and the
relation , reconstructs the truncated spectrum
of the permuted signal from the list of (frequency, coefficient)
pairs, performs an inverse DCT to recover an estimate of
the permuted signal, and depermutes it using Decoder
complexity is also

Fig. 6. Eight bit per pixel, 512� 512 texmos1.tiff texture
mosaic image number 1 from the USC-SIPI Image Database
(http://sipi.usc.edu/services/database).

Fig. 7. Eight bit per pixel, 512� 512 texmos2.p512.tiff tex-
ture mosaic image number 2 from the USC-SIPI Image Database
(http://sipi.usc.edu/services/database).

Our implementation of the COPERM-DCT en-
coder/decoder is in interpretedMATLAB on UNIX.
This implementation, plus the test images, some
supporting programs, and aREADMEfile, are available
at http://www.people.virginia.edu/˜nds5j/Welcome.html.

V. EXPERIMENTS IN TEXTURE IMAGE COMPRESSION

Textures are good examples of broadband image data.
Texture coding is important in segmentation-aided im-
age compression [18]. Figs. 6 and 7 depict two tex-
ture mosaic images from the USC-SIPI Image Database
(http://sipi.usc.edu/services/database, filestexmos1.tiff ,
and texmos2.p512.tiff , respectively). These are 8
b/pixel 512 512 collages of different types of texture.

As an assay, we downloaded the IJG implementation
of JPEG (cjpeg/djpeg , which is available at
ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6a.tar.gz), and the
latest (updated after the November 1997 meeting
of ISO/IEC JTC1/SC29/WG1) lossless JPEG codec
(locoe/locod V.0.90 , which is available for download
at http://www.hpl.hp.com/loco/locodown.htm).
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Fig. 8. Optimally permutedtexmos2.p512.tiff texture mosaic image
N=k = 8:

Fig. 9. Error image for JPEG encodedtexmos2.p512.tiff texture
mosaic image at a rate of 1.40 b/pixel.

Consider the texmos2.p512.tiff image in
Fig. 7. Fig. 8 depicts the optimal permutation of
texmos2.p512.tiff for It is readily verified
that the permuted image has been effectively transformed
into an almost-perfect harmonic.

Fig. 9 depicts the absolute error between the original
texmos2.p512.tiff image and the JPEG (cjpeg -
opt/djpeg ) encoded/decoded reproduction at a rate of
1.40 b/pixel. Fig. 10 depicts the absolute error between the
original texmos2.p512.tiff image and the COPERM-
DCT encoded/decoded reproduction at a rate of 1.42 b/pixel
(the same colormap is utilized for both renditions). Notice that
the COPERM-DCT error image exhibits smaller overall error
but also far less noticeable blocking.

Fig. 11 presents plots of rate-distortion results for thetex-
mos1.tiff image. The horizontal axis is b/pixel, whereas
the vertical axis is the peak signal-to-noise ratio (PSNR)
measured in decibels:

PSNR
MSE

where 255 is the peak image amplitude, and MSE stands for
mean squared error. Similarly, Fig. 12 presents plots of rate-

Fig. 10. Error image for COPERM-DCT encodedtexmos2.p512.tiff
texture mosaic image at a rate of 1.42 b/pixel.

Fig. 11. Rate-distortion curves fortexmos1.tiff texture mosaic image.
Solid with “*” = COPERM-DCT; dashed with “�” = JPEG (cjpeg
-opt/djpeg ). The solid vertical line depicts the rate achieved by the latest
lossless JPEG codeclocoe/locod V.0.90 .  Hewlett-Packard Co., 1997.

distortion results for thetexmos2.p512.tiff image. The
same results are presented in tabular form in Tables I and II,
respectively.

Some comments are in order. From Fig. 11 and Table I,
which present results for thetexmos1.tiff image, observe
that at a rate of 2.85 b/pixel, the COPERM-DCT codec
provides a PSNR margin of 1.2 dB’s relative to JPEG with
optimized Huffman tables. The gain increases with increasing
bit rate and levels off at 3.5 dB’s at roughly 3.75 b/pixel. Note
that for this image, the latest lossless JPEG codec achieves a
bit rate of 7.147 b/pixel, and PSNR results for lossy JPEG with
optimized Huffman tables at about 1 b/pixel are only around
20 dB’s; thus, the range of bit rates considered is meaningful
if we are interested in high-quality texture rendition.

Further gains are possible. To see this, consider
Fig. 12 and Table II, which present results for the
texmos2.p512.tiff image. Observe that at a rate
of approximately 1.40 b/pixel, the COPERM-DCT codec
provides a PSNR margin of approximately 1 dB relative to
JPEG with optimized Huffman tables. At 2.31 b/pixel, the
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Fig. 12. Rate-distortion curves fortexmos2.p512.tiff texture mosaic
image. Solid with “*”= COPERM-DCT; dashed with “�” = JPEG (cjpeg
-opt/djpeg ). The solid vertical line depicts the rate achieved by the latest
lossless JPEG codeclocoe/locod V.0.90 .  Hewlett-Packard Co., 1997.

TABLE I
RATE-DISTORTION PERFORMANCE ON THE8 B/PIXEL, 512� 512

texmos1.tiff TEXTURE MOSAIC IMAGE NUMBER 1 FROM THE

USC-SIPI IMAGE DATABASE (http://sipi.usc.edu/services/database).
PERMUTATION B/FREQUENCIESRETAINED FOR COPERM COLUMN

(TOP TO BOTTOM): 2/100, 3/100, 4/100, 5/100, 6/100

TABLE II
RATE-DISTORTION PERFORMANCE ON THE8 B/PIXEL, 512� 512

texmos2.p512.tiff TEXTURE MOSAIC IMAGE NUMBER 2 FROM THE

USC-SIPI IMAGE DATABASE (http://sipi.usc.edu/services/database).
PERMUTATION BITS/FREQUENCIESRETAINED FOR COPERM COLUMN

(TOP TO BOTTOM): 2/100, 3/300, 4/150, 5/100, 6/100, 7/100

gain is in excess of 3 dB’s. Again, the gain increases with
increasing bit rate. For this image, the latest lossless JPEG
codec achieves a bit rate of 7.182 b/pixel, and PSNR results
for lossy JPEG with optimized Huffman tables at about 1
b/pixel stand under 20 dB’s.

In both cases, the gain in PSNR increases substantially
with increasing bit rate. This is expected in view of our
earlier discussion, and it suggests that even better PSNR gains
for meaningful bit rates may be possible for high contrast-
resolution (bit-deep) broadband images. From Tables I and
II, it can be readily observed that i) only about 100 (out
of 262 144) frequencies are sufficient to capture most of
the energy in the permuted signal spectrum (thus, energy

compaction works extremely well), and ii) the rate reduction
benefit afforded by entropy coding the permutation repre-
sentation is relatively small (about 25%), and it diminishes
as we move toward higher bit rates. This extra rate margin
maybe sacrificed to further facilitatetranscodingthe encoded
bitstream, as explained next.

A. Puncturing the Code and an Alternative Decoder

Each sample of the bucketed permutation representation
specifies the bucket from which the corresponding recon-
structed signal/image sample will be drawn. There is a total
of buckets associated with a given “center” dyadic
frequency The samples of the inverse DCT of the truncated
spectrum are sorted and split in buckets (“percentiles”);
the reconstructed signal/image samples are then drawn from
the appropriate buckets. The samples associated with a given
bucket are drawn in aparticular order, namely, in increasing
sample index order, in accordance with the convention adopted
by the encoder.

Suppose that only theth dyadic DCT coefficient is retained
in the truncated spectrum. Each bucket of the corresponding
basis function contains identical samples. As a result, the
particular order in which samples are drawn from each bucket
is irrelevant. Now, consider the sorted and -bucketed
samples of the inverse DCT of a narrowband signal centered at
frequency The corresponding buckets contain samples that
are numerically close to each other. As a result, the particular
order in which samples are drawn from each bucket is not
significant. Thus, if energy compaction is successful, we need
not reconstruct the exact permutation at the decoder. This
observation may be exploited to build a simpler decoder. An
additional advantage of such a decoder is that it may handle
scalabletransmissions. This is explained next.

In multicastsystems, it is often desirable to fetch, e.g., 512
512 and 256 256 replicas of the same original image to

two different user classes, respectively, each class having dif-
ferent quality of service constraints [19]. Intranscoding[20],
dropping the rate allocated to a particular transmission, due
to changing bandwidth/traffic constraints, is often required. In
this context, it is desirable to be able to reduce the aggregate
data rate by simply dropping samples from the encoded data
stream, rather than decoding the full 512512 image and
then re-encoding from scratch. Scalar quantization is particu-
larly well suited for this task. The proposed COPERM-DCT
approach is also well suited: Fig. 13 presents a 256256 re-
production of thetexmos2.p512.tiff image that was ob-
tained by dropping samples from the encoded permutation rep-
resentation stream produced for the full-resolution 512512
image at the output of the COPERM-DCT encoder (b/pixel:
2.27, PSNR: 28.73 dB). Table III presents a rate-distortion
performance comparison for 256256 and 128 128 repro-
ductions of the 512 512texmos2.p512.tiff image that
was obtained by dropping permutation representation samples
from the COPERM-encoded bitstream (with entropy coding
disabled) for the 512 512 image and then entropy coding the
punctured bitstream. Observe that PSNR remains essentially
unaffected, even for 4 : 1 downsampling in each dimension;
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Fig. 13. Reproduction (256� 256) of texmos2.p512.tiff texture
mosaic image obtained by simply dropping samples from the encoded
permutation representation stream produced for the full-resolution 512� 512
image at the output of the COPERM-DCT encoder (b/pixel: 2.28, PSNR:
28.73 dB). The rate-distortion tradeoff remains essentially unaffected (cf., the
first column of Table III).

TABLE III
PUNCTURING THE PERMUTATION REPRESENTATION: RATE-DISTORTION

PERFORMANCE COMPARISON FORTWO REPRODUCTIONS OF THE512� 512
texmos2.p512.tiff IMAGE, OBTAINED BY SYSTEMATICALLY DROPPING

PERMUTATION REPRESENTATIONSAMPLES FROM THE COPERM-DCT ENCODED

BITSTREAM FOR THE 512� 512 IMAGE. THE NUMBERS IN PARENTHESES IN

THE FIRST ROW INDICATE PERMUTATION BITS/FREQUENCIESRETAINED

the bit per pixel rate is only mildly affected for up to 2 : 1
downsampling in each dimension.

Notice that in order to fully preserve the ability to change
the sampling resolution via simple decimation of the encoded
stream, the final entropy coding step should be disabled;
however, the benefit of entropy coding the permutation rep-
resentation is relatively small, as seen from Tables I and II;
thus, this is a small price to pay if we are interested in a
simple mechanism for aggregate rate reduction that effectively
respects the original b/pixel-PSNR tradeoff.

The code available at http://www.people.virginia.edu/
˜nds5j/Welcome.html includes two decoders: a basic decoder
that reconstructs the exact permutation and a multirate decoder
that is capable of decoding punctured code streams. The
multirate decoder degrades average performance (relative
to the basic decoder), but the degradation is usually barely
noticeable, and, as discussed below, the multirate decoder is
faster than the basic decoder.

B. Timing

The code available at http://www.people.virginia.edu/
˜nds5j/Welcome.html is a high-level (interpreted) MATLAB
implementation. It does not take advantage of finite-alphabet
binsort . The encoder program is calledcoperme . There
are two decoder programs:copermd and mrcopermd .

The former reconstructs the exact permutation. In order to
do so, it employs a loop that islinear in the size of the
dataset yet relatively time consuming in MATLAB, which is
slow in handlingFOR loops. The latter works directly with
the bucketed representation, as discussed above, and it is
recommended in practice for large datasets since it avoids the
aforementionedFOR loop.

For 256 256 images, bothcoperme and cop-
ermd/mrcopermd consume about 10–15 s of CPU time
measured on aSUN ULTRA-1. For 512 512 images,
coperme and mrcopermd consume about 1 min of CPU
time. We emphasize that the two basic operations involved
are sorting and the DCT. With a DSP board and/or custom
hardware (or a lower level implementation utilizingbinsort
on a workstation), much better benchmarks may be expected.

VI. CONCLUDING REMARKS

This paper has introduced COPERM, which is a tool for
transform-domain energy compaction of broadband signals.
COPERM may offer a rate-distortion performance gain when
used as a precoder, followed by a transform-domain encoder,
and applied to broadband signal compression. This application
has been illustrated by using COPERM coupled with simple
truncation of the resulting narrowband spectrum to compress
texture images, and interesting improvements over JPEG have
been reported. The results suggest that enhanced performance
should be expected for bit-deep textures. Texture coding is
important in segmentation-aided image compression [18]. On
the other hand, the application of COPERM is obviously
counterproductive for relatively smooth signals and images,
like Lena , or evenBarbara , which are already relatively
narrowband down to the 8 8 block level.

Although the basic idea behind COPERM is independent
of the particular transform domain chosen (and even signal
dimensionality), the cost of encoding the optimal permutation
can be prohibitively high if the associated basis functions do
not exhibit the “bucketing” property. Periodic basis functions
enjoy this property, but even though periodicityper se is
not necessary, the issue of whether or not COPERM can be
helpful when coupled with a given transform (often chosen to
meet other design objectives) needs to be investigated on a
case-by-case basis.

An appealing feature of COPERM is that it is relatively
simple and balanced in terms of encoder–decoder complexity.
Another interesting feature is the possibility to lower sampling
resolution via simple decimation of the encoded stream, and
this is useful in the context of multicasting/transcoding.

The connection with AM–FM signal analysis and synthesis
is an interesting one; indeed, permutations spawn a class of
discrete-time FM transforms that does not have a continuous-
time counterpart. This class of discrete-time FM transforms is
the subject of ongoing investigation.
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