IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 6, JUNE 1999 1679

COPERM: Transform-Domain Energy
Compaction by Optimal Permutation

Nicholas D. SidiropoulosMember, IEEE Marios S. Pattichis, Alan C. Bovilgellow, IEEE
and John W. HavlicekStudent Member, IEEE

Abstract—Compaction by optimal permutation (COPERM) is Energy compaction is an important first step in almost all
a tool for transform-domain energy compaction of broadband |ossy compression techniques. Typical examples include the
signals, whose foundation is a simple but powerful idea: Any gittarencing step in adaptive differential pulse code modulation

signal can be transformed to resemble a more desirable (e.g., L - e
from a transform-domain compaction viewpoint) signal from a (ADPCM) or the prediction step in predictive PCM [1] and

class of “target” signals (e.g., DCT basis functions) by means of a @pplying an energy-compacting transform, like DCT, as in
suitable permutation of its samples. One application of transform- JPEG [2], [3]. Prediction and/or transformation to some other
domain energy compaction is in lossy compression. We pursue more suitable domain are the two prevailing techniques for
one possml_e thread in detal_l and demonstrate some interesting energy compaction. The former compacts most of the energy
broadband image compression results. . . .

of the signal to be encoded in a relatively narrow range

Index Terms—Broadband image compression, coding, energy of amplitudes; the latter compacts most of the energy of

compaction, permutation, textures. the signal in a relatively narrow range of “frequencies” or,
in general, transform coefficients. Both work well when the

|. INTRODUCTION signal to be encoded is relatively smooth to begin with but

are not very efficient in compacting the energy of persistent

HIS PAPER presents a new tool for transform-domai . . ; o
) . roadband signals. These signals occupy a wide bandwidth in
energy compaction of broadband signals based on_a . o ) .
: . the frequency domain and exhibit fast and persistent variation
least squares permutation approach. Some basic theoretic : . : i
—in_the time domain. The purpose of this paper is to propose
results set the stage for the development of fast computational . : .
. . e : .a_new tool for energy compaction of broadband signals via
algorithms, which are exemplified in several experiments using.. . . o .
. . . optimal permutation. This permutation is matched to a given
a variety of broadband signals. These experiments demonStEra%sform domain in the sense that its qoal is to produce a
that the energy compaction afforded by COPERM is ver 9 b

S - - ermuted signal that resembles one of the associated basis
significant—very few coefficients are usually sufficient t

represent the compacted signal in the transform domain. unctions as closely as possible in a least squares (LS) sense.

N : . The idea of using permutations for (standalone) source
One application of transform-domain energy compaction

is in lossy compression. The simplest way to com resscgding has been investigated in the mid 1960’s to early 1980’s
Y P i P y b t\)/y Bergeret al. [4]-[6]. This and other related work [7]-[10]

narrowband signal is to truncate its spectrum down to a fe§ reviewed in the sequel (Section Ill). The idea of using a

significant coefficients; the loss is small if the signal is sut lobally optimal permutation for effective transform-domain

ficiently narrowband. In this context, the energy—compactir%n . ; ; Lo
: : . ergy compaction of broadband signals is a contribution of
permutation carries most of the coding load as well as trtlhe

coding cost. This approach will be shown to be fruitful for 'S paper.

sufficiently broadband signals and images. o
A. Organization

This paper is structured as follows. The main idea is intro-
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cessing energy-compaction block in many transform-domains 5
codecs, like JPEG [2], [3]. These codecs also incorporate
guantization and entropy encoding blocks. We temporarily OMW%NWWMM OMMWWWM
leave these blocks out of consideration (although they too can
be accounted for) and focus on energy compaction. 5 5
50 100 150 o} 50 100 150

(b) angle of decoded output

What is the best possible DFT input signal from an energyof) (a) angle of uncoded input
compaction viewpoint? Clearly, it isone of the given DFT

basis signals. Many real-life signals are smooth, thus havin1%14
most of their energy in the lowpass band of the spectrum;

the DFT is quite effective in compacting the energy of such

30

. o . . . . 10
signals. Actually, it is quite effective in compacting the energy " © 50 100 150 0 50 100 150
. P (c) mag angle error
of any narrowband signal, regardless of whether it is lowpask°
or bandpass. 100

The flip side of this is that the DFT is a poor choice for
. . - 50
compacting the energy of broadband signals, e.g., textures, fin-
gerprints, noise, fractals, or certain digital modulation signals. o, = o 150 ) 5 100 i
Given such a broadband signal, we would like to transform (€) mag fit permuted input (f) mag fft decoder output

it such that

 the transformed signal is as narrowband as possible:
ideally, one of the given DFT basis functions;
« the associated transformationiiwertible so that we may permutation as well. There exigt! possible permutations of
recover the original signal from the transformed signal;a length/V signal—meaning thalog(/N!) bits are generally
« the forward and inverse transforms are easgdostruct required to represent an arbitrary lengthsignal permutation.
apply, and represent This is slightly better thanVlog(XN) [or log(/N) bits per
For the sake of simplicity, and without loss of generalitysignal sample]. Thus, it appears that should not be too
let us temporarily restrict our attention to so-calleshstant big (actually, if the signal is digital, thetog(V) should be
modulus signals. These are complex-valued signals whos#ictly less than the number of bits used to represent a signal
magnitude remains constant over time, and only their angi@mple in order to achieve any compression gain at all). On
changes. A constant modulus signal is any signal that cantbe other hand/N' should not be too small; otherwise, even

Fig. 1. 2(n) = i (27 /N)(14+3n—2n2+120% —n6)

written asz(n) = Ae’*™) where the optimal matching is often not very accurate in absolute
A constant: terms. It appears, then, that the choice M8f exhibits an
a(-) : real-valued function; interesting (and unusual) tradeoff. However, as we will see
e square root of-1. later in Section 1V, there is an elegant way to circumvent the

Note that theangle functiorof z(n) is nota(n) but rathera(n)  reStriction of having to work with relatively smalv, even
modulo 2. The reason for temporarily restricting ourselve" digital data. _ _
to this class of signals is not technical but pedagogical: It How do we find such suitablepermutation?
allows us to make the first argument using the discrete FouriefRecall that the sought transformation should ideally trans-
transform, which is a very familiar tool. form the given signal to a DFT basis function. In general, if
Fig. 1(a) depicts the angle function of a broadband constaM€ insist on perfect transformation to a basis function, then
modulus signal, Fig. 1(d) depicts the magnitude of the DHMe transform cannot simultaneously be invertible as well as
of this signal, and Fig. 1(e) depicts the magnitude of tHasy to construct, apply, and represent. In particular, if we
DFT of a suitable permutation of the given constant-modultigstrict our attention to permutations, then we cannot insist on
signal: Notice that the permuted signal essentially consists&fact transformation because there exist signals that cannot be
a single DFT harmonic (there exist a few more negligible bsynthesized by permutation of a DFT basis function. It seems
nonzero DFT coefficients that are not visible in this plotyatural, then, to pose the following problem.
Fig. 1(b) depicts the angle function of the reconstructed signalGiven a constant modulus signal, find a permutation that
obtained by setting all negligible DFT coefficients of the best matches the angle function of the permuted signal to
permuted signal to zero, computing the inverse DFT, and thenthe angle function osomeDFT basis signal, i.e., one that
depermuting using the inverse permutation. This effectively pest matches the angle function of the permuted signal

recreates the angle function of the original constant-modulusig ((2n/N)kn) mod (2r) for the best possible: &
signal. Fig. 1(c) depicts the error between the angle functions{p 1 ... N — 1} in an LS sense.

of the original signal and the reconstructed signal [the signal-
to-noise ratio (SNR) is about 100 dB].

Of course, from a compression standpoint, we have
consider the cost of storing not only the compacted trans:
form (one complex number in this case) but the associated]

Let us use the letteks, 4, » to denote permutations of the in-
tegersin{0,1,2,---,N—1},i.e,{¢(n),n € {0,1,2,--- ,N—

} is a permutation of0,1,2,---, N — 1} for some fixed
Let G be the group of all such permutatiofi§| = N1).

n concise mathematical terms, we have the following.
IModulo scaling by a (potentially complex) number, of course. Problem 1: Given the angle functiorp(n) of a constant
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element modulus input signal, find Later on, we will explain how we may reduce this figure
N1 to O(N (log(N))?) without significant performance loss while
. . at the same time significantly reducing the cost of storing the
7 =argmin,. ¢ min E p(r(n)) . . 4
7 kC(0,L N-1) A= associated optimal permutation.
2 For finite-alphabet sequences, there exist more efficient

(1) sorting algorithms, likebinsort , which i O(N) instead

of O(Nlog(N)) (the latter figure is also a worst-case lower
bound for arbitrary real-valued data) [11]. As a result, the
complexity of the overall process can be reducedtav?)

for finite-alphabet sequences. Furthermore, there exists an
interesting alternative to Theorem 1 for the special case of
gnite-alphabet sequences. This is explored next.

Theorem 2: Consider two finite-alphabet sequences of
length V: p(n) anda(n). Assume that the alphabets are fixed
and known in advance [this can always be assumed for the
“target” sequencex(n)]. Let h, and h, be the histograms

Given a real-valued sequenggn) of length V, we will of the two sequences over the respective alphabets, and
say thatg is a sorting permutatiorfor p(n) if the sequence M = max(length(h,), length(hy)) (i.e., equal to the size
p(¢(n)) is sorted in increasing order (sorting permutations atg the largest alphabet). Then
not necessarily unique because of the possible existence of
ties Two or more elements may have exactly the same value)m

Theorem 1 [4, Th. 1]:Given tworeal-valuedsequences of
length NV, p(n) and a(n), consider the following problem:

(2 i

Notice that in terms of the data sequenge), this is not
a projection problem-s(r*(n)) need not be a permutation
of some((2r/N)kn) mod (27) but rather axloseto some
((2w/N)kn) mod (27) as possible.

In solving this optimization, the following general theorem
are key.

A. Key Theorems

N-1
inimum,cg »_ |p(r(n)) — a(n)* = f(hp, ha) = f*
=0

and f* can be computed frorh, andk, in O(M) operations.
. 9 Proof: From Theorem 1, the sought minimum is the

Ininmize - Z [p(r(n)) — a(n)] squared Euclidean distance between the sorted sequences.

=0 Given a histogram, the computation of the associated sorted

sequence is trivial; the same holds for the inverse operation. It

remains to be shown that* can actually be computed from

hy, andh, in O(M) [instead of a “naive” (fotM < N) O(N)]

operations. A simple algorithm would be as follows:

N-1

subjectto: r€G.

Let ¢, 6 be sorting permutations fqr(n), «(n), respectively.
Then, an optimumr is given byr(8(n)) = ¢(n), Vn.
Proof: This result is [4, Th. 1] with a minor modification: g

In [4], one of the two sequences is already sorted. The outlingl90rithm 1:
is as follows. Letg(n) = p(r(n)),¥n. An optimum» as  make a copy of the histograms; initializel, m to 0;
postulated above registers the smallest valug(ir) with the repeat until all data are consumed:
smallest value im(n), and then, the second smallest value { increment each of, m until A,(1) >0 and ., (m) > 0;
in p(n) with the second smallest value #(n), and so on. if (1) > ho(m) then
No other permutation can be better. To see this, consider any { f+ =h,(m) * |value,(l) — value,(m)|%;
sequence(n) induced by a permutation that does not register hp(l)— =ha(m);
the values as postulated above. Then, it is possible to findtwo A, (m) = 0;
indices, sayn,m, such thatg(n) > ¢(m), but a(n) < a(m). 1
Then, a simple swap af(n), ¢(m) would reduce the squared else
error, and thus, the sequence induced by the permutation is not { f+ =h, (1) * |value,(l) — value,(m)|%;
optimal. This can be easily seen by enumerating the (six) total ha(m)— =h,(1);
orderings that are consistent with the constraits) > q(m), hy(1) = 0;
a(n) <a(m). ] 1

Remark 1: Sorting is, at worst, a@ (N log(V)) operation  }
[11]; hence, an optimunr can be found INO(N log(V))

operations. where value, () returns the value corresponding to its argu-
It is now clear how to solve the optimization problem ifment in the alphabet associated with ) sequence and
(1): For fixed %, invoke the above theorem to solve for théimilarly for value,(-); the resultingf equalsf*. u

bestr for the givenk. This takesO(N log(N)) operations. ~ Remark 3 Of course, calcglating the histogram of the input

Repeat for allV different &'s, and pick the best such (for ~Sequence is aW (V) operation; thus, the fact that* can

the bestk) as the final answer. The overall process entaigFtually be computed fronk, and h, in O(M) [instead

O(N?log(N)) operations. of O(NN)] operations is of little utility when we are given
Remark 2: Given that problems involving optimizationp(n) instead ofh,, and is only interested in computing”

over the permutation group are typically intractable [12], for just onea(n). It is when we need to compargeveral

is quite refreshing that our particular formulation (Problem 2p qiged the alphabet is fixed and known in advance [bitisort  is

1) is not. also known asounting-sort
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(d) mag fft encoder input
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{e) mag fft permuted input {f) mag fit decoder output (e) mag fit permuted input (f) mag fft decoder output
Fig. 2. #(n) = el (27/N)(=nV/24143n—2n24120%) Fig. 3. a(n) = JC7/N)(T(7)+36) T(.) is the gamma function.

5 5

candidate target sequendegn)) that the benefit afforded by

this theorem becomes apparent.

In light of this latter theorem, an alternative approach OWWMAMN °
emerges: Given a finite-alphabet input sequence and a number
of target sequences, find the best target sequence by i) compuiti 50 100 150
ing the histogram of the input sequence({N) operations s (8) uncoded input
(the corresponding computation for the target sequences need
only be doneonceandoff-line) and ii) selecting the best target o
sequence by computing the associafédmetrics, as above,
at a complexity cost o©( M) operations each. In the end, we -5y - - o
only needonesorting to find the optimum match. This being,,, ©) error
a finite-alphabet sorting operation, it follows that the overall
runtime complexity of this process 8(N +7 x M + N) = 1000
O(N + T x M) operations, wher@” is the number of target sooo
sequences, anfff is maximum alphabet size. This would be
beneﬁCiaI fOI’M Sma” relative toxN. 0 (e) mag dctsggr?nuted input 10000 o (f) mag dctS:eogoderoutput 10000

Notice that Theorem 1 provides the means to match two
real-valued signals in the time domain by means of an optinfad. 4. «(») = a realization of a zero-mean, unit-variance white Gaussian
(in the LS sense) permutation. In the context of transforri©¢¢ss:
domain coding, we would actually like to match the two k& . - . -
signals in the specified transform domain. At first gIaan,Ie’ Justone (the strongest) [.)FT coefficient |s.suff|C|ent to
the problem may appear tougher in the transform domaﬁ{dequately represent _the optimally permuted signal.

For linear orthogonal transforms, however, LS matching-b TA" examples S0 far mvolv_ed the DFT an_d constant modulus
permutation in the time domain is equivalent to LS matchin _|gnal§, for which Sine ppt|mal permutatlon.was found by
by-permutation in the transform domain. Consider, for e natching the angle function of the permuted signal to the angle

ample, a real-valued sequene) of length N, where we unction of the best possible DFT basis function in a LS sense.
let ’ ' Of course, Theorem 1 is general, and, for real-valued signals,

it can be applied to match the permuted signal itself to some

!

-5

[=]

50 100 150
(b) decoded output

600

[=]

5000 10000
(d) mag dct encoder input

600

‘” Its vector representation; - other prescribed signal, or collection of signals, in an LS sense.
D: N X N forward DFT mat_n).(, For real-valued signals, the DCT is often the transform of
Pi N x N permutation matrix; choice (e.g., [2] and [3]). Fig. 4(a)—(f) shows the result of
s. a desired specirum. ) applying Theorem 1 to a realization of a standard zero-mean,
Let || - |3 stand for squared Euclidean norm affdstand njt-variance white Gaussian process. The goal is to match
for Hermitian transpose. Then|DPxz — sl3 = [[PZ — the permuted signal to a DCT basis function in an LS sense.
(1/N)D"s|)3 by virtue of Parseval's Theorem Fig. 4 follows the same presentation format as earlier figures.
The differences here are as follows.
B. Some Further Examples ) N = 1024.

Further examples are shown in Figs. 2(a)—(f) and 3(a)—(f),ii) We use 100 DCT coefficients to approximate the com-
following the same format as Fig. 1. As in the first exam- pacted DCT of the permuted signal.
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iii) Only the first 128 samples of the original, reconstructedhis direction. Work on alternative scan orders has focused on
and error signals are shown to facilitate reader apprecal scan orders and prediction-error estimates as a measure
ciation of the quality of reconstruction. of goodness. Selection of the best scan order is accomplished

either by exhaustive search or by minimum weight spanning

tree (MST) algorithms. In contrast, our proposed technique

[ll. PERSPECTIVE PRIOR WORK, AND focuses on global and globally optimum permutations, and the
ALTERNATIVES IN A BROADER CONTEXT measure of goodness is Euclidean distance of the permuted

Permutation codeare a class of codes that were introducegignal from some prescribed (family of) target signal(s).
by Slepian [13] for reliably transmitting digital data over In a recent paper [10], Arnavut discusses an interesting
noisy communication channels. Permutation source codes wap@roach to lossless image compression: treating the image
developed by Bergeet al. [4]-[6], who made important as amultiset permutatiomnd using a Lehmer inversion/image
contributions to the theory of permutation codes (see albistogram representation of the image data. The Lehmer inver-
Dunn [14]). The basic idea of permutation coding (as appli&don vector typically has lower sample entropy than the image
to the case of source coding) can be compactly stated \@storper se and this facilitates lossless compression.
follows. We start with a basic “mother” codeword, which
induces an associated codebook consisting of all distinct
permutations of the mother codeword. Optimum encoding
(and, in the case of channel coding, maximum likelihood
decoding) is greatly simplified by Theorem 1. Given an When using COPERM for DFT/DCT domain energy com-
input vector, the selected codeword is the permutation of thaction in the context of lossy signal compression, the cost of
mother codeword that best matches the given input in a Ic8ding the associated permutation and the cost of searching
sense. This codeword is easily found by invoking Theorefar the optimal permutation should be kept as low as possible.
1. Relative to permutation source coding, COPERM hasGne way to contain the cost of coding the permutation is to
different goal, namely, to create a narrowband signal in tlexploit the inherenperiodicity of DFT/DCT basis functions
DFT/DCT domain. Coupled with, e.g., simple truncation oifh the time domain.
the resulting narrowband spectrum, COPERM can be used td_et us illustrate this point by focusing on the DFT basis
construct a compression algorithm. Such an algorithm méynction for ¥ = N/2. This function is simply a binary
provide a more refined signal representation compared wihcillation: (—1)". When sorted, it gives two “buckets.” Any
permutation source coding, which represents the input usisgmple of the original sequence may fall one of the
a single permutation of the mother codeword, which is the/o buckets; exactly where it falls within a given bucket is
equivalent of using only the “carrier frequency.” irrelevant in terms of LS fit. Consequently, a single bit index
A permutation of signal samples followed by the regulgser signal sample is sufficient to determiae optimal signal
DFT is a discrete FM transform (DFMT) [15]-{17], andpermutation for the givek. Stated another way, fdr = N/2,
signal-dependent optimization of the permutation with thiaere exist only2" distinct equivalence classes (with respect
goal of obtaining a narrowband spectrum can be viewed @sLS fit) of permutations out of a total aN! [essentially
a signal-adaptive DFMT. The time-domain counterpart of this" '°s(")] permutations; thusN bits [instead ofV log(N)
idea is to permute signal samples to minimize the sum bits] are sufficient to represent the optimal permutation. We
squared pairwise temporal differences. For real-valued signats®y decide on a class representative in an arbitrary fashion,
this amounts to a sorting permutation, and a variation pfovided it is consistent and known to both the encoder and
this idea has been explored by Neagoe [7], who proposedha decoder. We simply sort indices that fall in the same
predictive ordering/linear approximation technique for imageucket in increasing order. The decoder uses this convention
data compression. to reconstruct the encoded permutation from its “bucketed”
The idea of using a signal-adaptive block transform tepresentation.
enhance energy compaction and signal compression perforSimilar (but smaller) savings can be realized for=
mance is not new, e.g., Caglat al. [8] advocate using N/4,---,2. In general, we needog(N/k) bits per signal
a bank of such transforms, generated by stacking signemimple to represent an optimal permutation for =
permutations of signal centroid vectors. Relative to COPERM, 2,4, ---,N/2. We restrict our attention to thesdyadic
the above approach employs a small number (e.g., 8) of sigriegtjuenciesonly. Of course, a similar argument can be made
permutations of a given centroid vector, and these are chosenthe DCT, and we employ the 1-D DCT in the sequel.
to guaranteeorthogonality of the resulting transform matrix ~According to Theorem 2, the best target frequercys
instead of matching the input signal to a DFT/DCT basthe one whose associated sample histogram is closest (in
function in a LS sense. the LS sense) to the histogram of the signal at hand. Many
We may view a permutation of the elements of a rasteoroadband signals exhildgvel diversity meaning that smaller
scanned vector of image samples asan orderan alternative target frequencieg (which also exhibit higher sample level
(i.e., other than the given raster-scan) way of visiting the giveliversity) tend to provide better energy compaction. The flip
collection of data points. The idea of using better scan ordesisle is that smallek lead to higheldog(N/k), i.e., more bits
to improve on prediction accuracy is quite old; the survetp code the permutation. One way to resolve this tradeoff is
paper [9] provides a good recent summary of prior work ito pick the smallest we can afford under a rate constraint

IV. APPLICATION IN BROADBAND
SIGNAL/IMAGE COMPRESSION
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Fig. 5. COPERM-DCT encoder block diagram. 1505 ‘1 y d Y ‘ l ;

200 ; 3 -‘?l |

and then truncate the resulting narrowband spectrum down  zsof e sk & fudald : -; 1

to a small fixed number of most significant coefficients. This ;g% # =t MNTCE ‘ . RELEEDS

approach is simple and fast (no frequency search), and it works R i s et s

very well for broadband signals that exhibit level diversity. 0 ‘1&“!"-"'”"' e g #

Fig. 5 presents the resulting COPERM-DCT coder in block 40}ty 2 s )
diagram form. The input image is raster scanned to produce so "'." Al R 3 j
a long vectorz of length NV (V is assumed to be a power of soo 2 iy e, ;i

2). k is selected to be the smallest power of two for which - g0 00 1s0r 200 ToSoF SO0T B0 400, 450 500
log(.N/k) < R, which is a user-specified rgte C_OnStrathig. 6. Eight bit per pixel, 512 x 512 texmosl.tiff texture
Typical values ofk are N/2,N/4,N/8, resulting in 1-3 mosaic image number 1 from the USC-SIPI Image Database
bits/sample of “raw” permutation coding overhead (this cahttp://sipi.usc.edu/services/database).

be subsequently reduced by entropy coding). kebe a
permutation that sorts [¢ is a byproduct okort(x); x(¢(n))

is sorted in increasing ordeg}.is partitioned intaV/k length-

k sub-blocks (“buckets”). Each of these sub-blocks is sorted in
increasing order, in accordance with our earlier discussion and
associated convention, and the result is stored. ihet 8;, be

a permutation that sorts thigh (1-D) DCT basis functioné,

can be precomputed). Note thais as good ag in matching

the permuted signal to the sorted samples ofitheDCT basis
function. Applyinge,j1 to = gives the total permutatiop,

pr(O(n)) = m(n).

This is a permutation that best matches the input to the
kth DCT basis function. A bucketed representation 7of

is then derived according to(n(n)) = floor(n/k),n =
0,1,---,N — 1. Note that given our intra-bucket sortingFig. 7. Eight bit per pixel, 512x 512 texmos2.p512.tiff tex-
convention,r allows complete recovery of (and therefore [Wé mosaic image number 2 from the USC-SIPI Image Database

. (http://sipi.usc.edu/services/database).

pt), yet its samples take values M---,(N/k) — 1, thus

requiring log(N/k) b/sample to represent. i i

The input vector is permuted using and transformed Our |mpleme_ntat_|0n_ of the COPERM-DCT en-
using DCT. A small user-specified number (e.g., 100) of mogpder/decoder is in interpretedMATLAB on UNIX.
significant (strongest) DCT coefficients are selected and storeyS implementation,  plus the test images, some
as frequency, coefficiehtpairs—the coefficient part beingSUPPOrting programs, and &®EADMEfile, are available
stored in 32-b floating-point representation. This informatioft NtP://www.people.virginia.edu/"nds5j/\Welcome.htm.
along with the bucketed permutation representatiorplus
header information (image size, bit deptbg(N/k), etc.) is
stored in a file, which is subsequently processed by a loss-Textures are good examples of broadband image data.
less entropy coderggip in our particular implementation). Texture coding is important in segmentation-aided im-
Encoder complexity i$)(N log(V)). Recall thatV = image age compression [18]. Figs. 6 and 7 depict two tex-
rows x image columns so tha¥ can be big; however, the ture mosaic images from the USC-SIPI Image Database
two basic operations involved are i) sorting and ii) DCT; botthttp://sipi.usc.edu/services/database, fitegmosl.tiff ,
can be very efficiently implemented. We provide actual timingnd texmos2.p512.tiff , respectively). These are 8
results in the next section. b/pixel 512 x 512 collages of different types of texture.

The decoder inverts the entropy coding stggpnzip in our As an assay, we downloaded the 1JG implementation
implementation), recovers from » andp, from =, 8y, and the of JPEG ¢€jpeg/djpeg , which is available at
relationp,(6x(n)) = w(n), reconstructs the truncated spectrurftp://ftp.uu.net/graphics/jpeg/jpegsrc.vba.tar.gz), and the
of the permuted signal from the list ofréquency, coefficieht latest (updated after the November 1997 meeting
pairs, performs an inverse DCT to recover an estimate of ISO/IEC JTC1/SC29/WG1) lossless JPEG codec
the permuted signal, and depermutes it using. Decoder (locoe/locod V.0.90 , Which is available for download
complexity is alsoO(N log(N)). at http://www.hpl.hp.com/loco/locodown.htm).

100 150 400 450

V. EXPERIMENTS IN TEXTURE IMAGE COMPRESSION



SIDIROPOULOSEt al. COPERM: TRANSFORM-DOMAIN ENERGY COMPACTION BY OPTIMAL PERMUTATION 1685

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500

Fig. 8. Optimally permutedexmos2.p512.tiff texture mosaic image Fig. 10. Error image for COPERM-DCT encod&gkmos2.p512.tiff
N/k = 8. texture mosaic image at a rate of 1.42 b/pixel.
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Fig. 9. Error image for JPEG encodedxmos2.p512.tiff texture

mlgsaic image Iat agrate of 1.40 b/pixel. * P I o Fig. 11. Rate-distortion curves foexmosL.tiff texture mosaic image.
Solid with “** = COPERM-DCT; dashed witho” = JPEG (¢jpeg
-opt/djpeg ). The solid vertical line depicts the rate achieved by the latest

Consider the texmos2.p512.tiff image in lossless JPEG codéacoe/locod V.0.90 . O Hewlett-Packard Co., 1997.

Fig. 7. Fig. 8 depicts the optimal permutation of

texmos2.p512.tiff  for N/k = 8. It is readily verified distortion results for théexmos2.p512 tiff image. The

that the permuted image has been effectively transformggme results are presented in tabular form in Tables | and II,

into an almost-perfect harmonic. respectively.

Fig. 9 depicts the absolute error between the original Some comments are in order. From Fig. 11 and Table |,
texmos2.p512.tiff image and the JPEGCjpeg - which present results for ttexmos1.tiff  image, observe
opt/djpeg ) encoded/decoded reproduction at a rate @fat at a rate of 2.85 b/pixel, the COPERM-DCT codec
1.40 bipixel. Fig. 10 depicts the absolute error between thg, ides a PSNR margin of 1.2 dB's relative to JPEG with
original texmos2.p512.iff image and the COPERM- niimized Huffman tables. The gain increases with increasing
DCT encoded/decoded reproduction at a rate of 1.42 b/pixg rate and levels off at 3.5 dB's at roughly 3.75 bipixel. Note
(the same colormap is utilized for both renditions). Notice th"fﬁat for this image, the latest lossless JPEG codec achieves a

the COPERM-DCT error image exhibits smaller overall €1%Yit rate of 7.147 b/pixel, and PSNR results for lossy JPEG with

but also far less noticeable blocking. optimized Huffman tables at about 1 b/pixel are only around

Fig. .11 pre§ents plots of raFe-d|stort|9n resultg fortihe 20 dB’s; thus, the range of bit rates considered is meaningful
mos1.tiff image. The horizontal axis is b/pixel, wherea . NS . i
we are interested in high-quality texture rendition.

the vertical axis is the peak signal-to-noise ratio (PSN )Further gains are possible. To see this, consider

measured in decibels: oo Fig. 12 and Table ll, which present results for the
PSNR= 10log;, 2557 texmos2.p512.tiff image. Observe that at a rate

MSE of approximately 1.40 b/pixel, the COPERM-DCT codec

where 255 is the peak image amplitude, and MSE stands fopvides a PSNR margin of approximately 1 dB relative to
mean squared error. Similarly, Fig. 12 presents plots of ratlPEG with optimized Huffman tables. At 2.31 b/pixel, the
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Fig. 12.

Rate-distortion curves foexmos2.p512.tiff

N "
4 5
bits per pixel

texture mosaic

image. Solid with “** = COPERM-DCT; dashed witho” = JPEG €jpeg

-opt/djpeg

lossless JPEG codémcoe/locod V.0.90

). The solid vertical line depicts the rate achieved by the Iate%t
. O Hewlett-Packard Co., 1997.

TABLE |

RATE-DISTORTION PERFORMANCE ON THE8 B/PIXEL, 512 x 512
TeEXTURE MosaAIC IMAGE NUMBER 1 FROM THE

texmos1.tiff

USC-SIPI MAGe DaTtaBASE (http://sipi.usc.edu/services/database).
PERMUTATION B/FREQUENCIES RETAINED FOR COPERM MLUMN
(Top TO BoTTOM): 2/100, 3/100, 4/100, 5/100, 6/100

COPERM (using DCT) | JPEG (cjpeg -opt/djpeg) | JPEG-LS (locoe/locod)
bpp PSNR bpp PSNR bpp PSNR
1.71 22.80 1.76 23.49 - -

2.85 28.83 2.86 27.61 -
3.77 34.70 3.70 31.19 -
4.96 40.40 4.97 37.35 -
5.98 45.54 5.94 42.34 - -
7.147 00

TABLE 1l

RATE-DISTORTION PERFORMANCE ON THE8 B/PIXEL, 512 x 512
TeEXTURE MosAIC IMAGE NUMBER 2 FROM THE

texmos2.p512.tiff

USC-SIPI MAGe DaTtaBASE (http://sipi.usc.edu/services/database).
PERMUTATION BITS/FREQUENCIESRETAINED FOR COPERM MLUMN
(Top 1o BoTTOM): 2/100, 3/300, 4/150, 5/100, 6/100, 7/100

COPERM (using DCT) | JPEG (cjpeg -opt/djpeg) | JPEG-LS (locoe/locod)
bpp PSNR bpp PSNR bpp PSNR
1.42 22.83 1.38 21.76 - -

2.31 28.87 2.40 25.53 -
3.60 34.84 3.38 29.50 -
4.68 40.85 4.20 33.24 -
5.64 46.69 5.42 39.48 -
6.60 52.31 6.66 46.59 - -

7.182 o0
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compaction works extremely well), and ii) the rate reduction
benefit afforded by entropy coding the permutation repre-
sentation is relatively small (about 25%), and it diminishes
as we move toward higher bit rates. This extra rate margin
maybe sacrificed to further facilitattanscodingthe encoded
bitstream, as explained next.

A. Puncturing the Code and an Alternative Decoder

Each sample of the bucketed permutation representation
specifies the bucket from which the corresponding recon-
structed signal/image sample will be drawn. There is a total
of N/k buckets associated with a given “center” dyadic
frequencyk. The samples of the inverse DCT of the truncated
spectrum are sorted and split M/ buckets (“percentiles”);
the reconstructed signal/image samples are then drawn from
the appropriate buckets. The samples associated with a given
ucket are drawn in particular order, namely, in increasing
sample index order, in accordance with the convention adopted
by the encoder.

Suppose that only theth dyadic DCT coefficient is retained
in the truncated spectrum. Each bucket of the corresponding
basis function containg identical samples. As a result, the
particular order in which samples are drawn from each bucket
is irrelevant. Now, consider the sorted afd/k-bucketed
samples of the inverse DCT of a narrowband signal centered at
frequencyk. The corresponding buckets contain samples that
are numerically close to each other. As a result, the particular
order in which samples are drawn from each bucket is not
significant. Thus, if energy compaction is successful, we need
not reconstruct the exact permutation at the decoder. This
observation may be exploited to build a simpler decoder. An
additional advantage of such a decoder is that it may handle
scalabletransmissions. This is explained next.

In multicastsystems, it is often desirable to fetch, e.g., 512
x 512 and 256x 256 replicas of the same original image to
two different user classes, respectively, each class having dif-
ferent quality of service constraints [19]. transcoding[20],
dropping the rate allocated to a particular transmission, due
to changing bandwidth/traffic constraints, is often required. In
this context, it is desirable to be able to reduce the aggregate
data rate by simply dropping samples from the encoded data
stream, rather than decoding the full 5¥2512 image and
then re-encoding from scratch. Scalar quantization is particu-
larly well suited for this task. The proposed COPERM-DCT

gain is in excess of 3 dB’s. Again, the gain increases witipproach is also well suited: Fig. 13 presents a 5856 re-

increasing bit rate. For this image, the latest lossless JPBfduction of theexmos2.p512.tiff

image that was ob-

codec achieves a bit rate of 7.182 b/pixel, and PSNR resutisned by dropping samples from the encoded permutation rep-
for lossy JPEG with optimized Huffman tables at about fesentation stream produced for the full-resolution 51312
b/pixel stand under 20 dB’s.
In both cases, the gain in PSNR increases substanticly27, PSNR: 28.73 dB). Table Ill presents a rate-distortion
with increasing bit rate. This is expected in view of ouperformance comparison for 256 256 and 128x 128 repro-

earlier discussion, and it suggests that even better PSNR galastions of the 51 512texmos2.p512.tiff

image at the output of the COPERM-DCT encoder (b/pixel:

image that

for meaningful bit rates may be possible for high contrasivas obtained by dropping permutation representation samples
resolution (bit-deep) broadband images. From Tables | afrdm the COPERM-encoded bitstream (with entropy coding
Il, it can be readily observed that i) only about 100 (outlisabled) for the 51 512 image and then entropy coding the
of 262144) frequencies are sufficient to capture most plinctured bitstream. Observe that PSNR remains essentially
the energy in the permuted signal spectrum (thus, enengaffected, even for 4:1 downsampling in each dimension;
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Decompressed image The former reconstructs the exact permutation. In order to
' 3 Pirdig do so, it employs a loop that ilnear in the size of the

dataset yet relatively time consuming in MATLAB, which is

slow in handlingFORloops. The latter works directly with

the bucketed representation, as discussed above, and it is

recommended in practice for large datasets since it avoids the

aforementioned-OR loop.

For 256 x 256 images, bothcoperme and cop-
ermd/mrcopermd  consume about 10-15 s of CPU time
measured on &8UN ULTRA-1 For 512 x 512 images,
coperme and mrcopermd consume about 1 min of CPU
time. We emphasize that the two basic operations involved
are sorting and the DCT. With a DSP board and/or custom
hardware (or a lower level implementation utilizibgsort
on a workstation), much better benchmarks may be expected.

Fig. 13. Reproduction (256< 256) of texmos2.p512.tiff texture

mosaic image obtained by simply dropping samples from the encoded

permutation representation stream produced for the full-resolution<5522 VI. CONCLUDING REMARKS

image at the output of the COPERM-DCT encoder (b/pixel: 2.28, PSNR:

28.73 dB). The rate-distortion tradeoff remains essentially unaffected (cf., the This paper has introduced COPERM, which is a tool for

first column of Table Iil). transform-domain energy compaction of broadband signals.
COPERM may offer a rate-distortion performance gain when

. o TABF'Q-E i RereD used as a precoder, followed by a transform-domain encoder,
NCTURING THE PERMUTATION REPRESENTATION RATE-DISTORTION ; . . . o
PERFORMANCE COMPARISON FORTWO REPRODUCTIONS OF THES12 x 512 and app“e_d to broadband S_Ignal compression. This fapp“_catlon
texmos2.p512.tiff ImMAGE, OBTAINED BY SvsTEmATIcALLY Dropping  has been illustrated by using COPERM coupled with simple

PERMUTATION REPRESENTATIONSAMPLES FRom THE COPERM-DCT Eicobep  truncation of the resulting narrowband spectrum to compress
BITSTREAM FOR THE512 X 512 IMAGE. THE NUMBERS IN PARENTHESES IN ; ; ; ;
THE FIRST Row INDICATE PERMUTATION BITS/FREQUENCIES RETAINED texture images, and interesting improvements over JPEG have
been reported. The results suggest that enhanced performance

COPERM-DCT (3/100) | COPERM-DCT  (2/100)

bop PSNR bop PSNR _should be_ expected fo_r blt-_deep_ textures. Textur_e coding is
ST9x512 297 28.73 5 22.83 important in segmentation-aided image compression [18]. On
256x256 2.28 28.73 1.59 22.75 the other hand, the application of COPERM is obviously
128x128 2.79 28.59 2.08 22.59

counterproductive for relatively smooth signals and images,
like Lena, or evenBarbara , which are already relatively
. ; . . narrowband down to the & 8 block level.
the bit | rat I Idly affected f to 2:1 S . .
doevvnlsarrJr?r:Iifllg);(ein rga?:rlsd?mneyn;?(l)n y afiected for tp fo Although the basic idea behind COPERM is independent
Notice that in order to fully preserve the ability to changg?c the partli:_tjlartrt]ransfotrn} domz:\;_n C?r?sen t_(an(lj even tmgnal
the sampling resolution via simple decimation of the encodgHﬂens'ona ! y_),_ € cost of encoding the optimal permutation
stream, the final entropy coding step should be disabled be 'pr_ohlbmvely h|gh if the assouat(_ad .baS's functloqs do
however, the benefit of entropy coding the permutation reggt exhlt_)lt the "bucketing” property. Perlod!c b.a.S'S fungtlons
resentation is relatively small, as seen from Tables | and 'n![oy this proptehrty,_ but e\f/enhtfgr?ugh per;OgI(C)IIg,EFRIS\Ae IS b
thus, this is a small price to pay if we are interested in RPt necessary, the 1Ssue ot whether or no can be

simple mechanism for aggregate rate reduction that effectiv@emftUI ;/;/]hen dcoypledbyvltr:. agen t(rjantsfoE)m .(oftent.ch?sgn to
respects the original b/pixel-PSNR tradeoff. eet other design objectives) needs to be investigated on a

. Lo ase-by-case basis.
The code available at http://www.people.vwglma.edLﬁ . . o .
“nds5j/Welcome.html includes two decoders: a basic decodefAnI app(ej:a;)llr}g fea(;u_ret of COEERMOI'S tgat 'td's relatl\I/ert
that reconstructs the exact permutation and a multirate deco gypie and balanced In terms ol encoder-decoder complexity.

that is capable of decoding punctured code streams. other interesting feature is the possibility to lower sampling
tlis‘golution via simple decimation of the encoded stream, and

multirate decoder degrades average performance (rela . ful in th text of multicasting/t di
to the basic decoder), but the degradation is usually baréw/s IS usetuln the context of multicasting/transcoding. .
he connection with AM—FM signal analysis and synthesis

noticeable, and, as discussed below, the multirate decoder is' . ; " ~indeed tai | f
faster than the basic decoder. IS an interesting one; indeed, permutations spawn a class o

discrete-time FM transforms that does not have a continuous-
time counterpart. This class of discrete-time FM transforms is

the subject of ongoing investigation.
The code available at http://www.people.virginia.edu/

“nds5j/Welcome.html is a high-level (interpreted) MATLAB

implementation. It does not take advantage of finite-alphabet ACKNOWLEDGMENT

binsort . The encoder program is callembperme . There The authors would like to thank the anonymous reviewers
are two decoder programsopermd and mrcopermd . for providing valuable feedback.
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