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Fingerprint Classification Using an AM–FM Model

Marios S. Pattichis, George Panayi, Alan C. Bovik, and Shun-Pin Hsu

Abstract—Research on fingerprint classification has primarily focused
on finding improved classifiers, image and feature enhancement, and less
on the development of novel fingerprint representations. Using an AM–FM
representation for each fingerprint, we obtain significant gains in classifi-
cation performance as compared to the commonly used National Institute
of Standards system, for the same classifier.

Index Terms—AM–FM model, AM–FM transforms, fingerprint classifi-
cation, multidimensional frequency modulation, probabillistic neural net-
works.

I. INTRODUCTION

The problems of classifying and analyzing fingerprints is a difficult
task which for a long time has required the service of trained experts
[5], [11]. Indeed, fingerprint classification (ten- or single-print) con-
tinues to serve as a primary means of identification and record-keeping.

High-speed computing, database and networking technologies and
sophisticated image processing methodologies have increased the
topical significance of automatic fingerprint identification systems
(AFIS), primarily for ten-print and single-print identification, which
usually deploy optimal or adaptive classifiers, such as artificial neural
networks (ANNs), to achieve reasonable classification results [1], [4],
[6], [8], [9], [16]–[18].

Currently, no existing system uses physical models of the mor-
phogenic processes giving rise to the fingerprint pattern, relying
instead on intuitive image features for classification purposes. One
possible approach that has been suggested is to view fingerprints as
the solutions of reaction diffusion (RD) partial differential equations
(RD-PDEs), which have been used to successfully describe biological
morphogenesis and many natural pattern formations [10]. Unfortu-
nately, the RD modeling problem is a very difficult inverse problem
and we have seen no solutions to it. However, the solutions of RD
equations often take the form of amplitude-modulated (AM) and
frequency-modulated (FM) functions.

Here, we take the direct approach of modeling fingerprint images as
AM–FM functions. Specifically, we propose the use of a computed FM
image component to achieve improved fingerprint feature extraction,
and hence, classification.

We begin by showing why AM–FM models are well-suited for de-
scribing fingerprints. Ridge variations are represented as an FM func-
tion, while variations in the ridge intensity modeled as an AM func-
tion. We show how the FM component can be isolated (by bandpass
filtering) and extracted using a dominant component analysis algorithm
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Fig. 1. Fingerprint image intensity variation along the ridge orientation
coordinate (this is described by the� -coordinate).

(DCA). We then use the dominant FM component as input to the stan-
dard NIST fingerprint classification algorithm. We demonstrate signif-
icant classification performance improvement over a set of 200 NIST
fingerprints.

II. AM–FM M ODEL FORFINGERPRINTIMAGES

We model the fingerprint image as a productI(x1; x2) =
a(x1; x2)f(�1(x1; x2), �2(x1; x2)) where a(x1; x2) denotes a
slowly-varying amplitude function that is used to capture varia-
tions in the maximum (ridge peak) and minimum (ridge valley)
fingerprint intensities. The new curvilinear coordinate system
(x1; x2) ! (�1(x1; x2), �2(x1; x2)) is used for describing the
image intensity variation along the ridge orientation�1(x1; x2),
and the constant image intensity along the ridges�2(x1; x2). It is
important to note that the two curvilinear coordinates introduced here
will be continuous away from most minutiae points and corrupted
ink areas. However, these discontinuities can be incorporated into the
coordinate transformation. We will next comment on the curvilinear
coordinate system, and use it to derive an AM–FM series expansion
for the fingerprint.

Along the�2-coordinate curve, we expect that the image intensity of
I(x1; x2)=a(x1; x2) remains constant. We express the image intensity
as only a function of the first curvilinear coordinate

f(�1(x1; x2); �2(x1; x2)) = f(�1(x1; x2))

by abuse of notation. We note that we can always approximate
�2(x1; x2) for any image by simply solvingI(x1; x2) = C for
different values forC. For example, in ridge extraction, valleys are
described by�2 coordinate curves for whichI(x1; x2) = Cmin,
while peaks are described by�2 coordinate curves for which
I(x1; x2) = Cmax.

For the second set of coordinate curves, we consider�1-curves that
are orthogonal to the ridge curves. By definition, a curveS is orthog-
onal to a set of coordinate curves, if at every image point the tan-
gent vector ofS is orthogonal to the tangent vector of the coordinate
curve through the same point. In the NIST-standard, examples of such
curves are computed by following the ridge orientation vectors. By def-
inition, for any image,rI(x1; x2) will always be orthogonal to the
I(x1; x2) = C curves, and hence will approximate the�1-curves.

Along the�1-coordinate, we meet a peak, a valley, followed by an-
other peak, a valley and so on. We assume that the peaks and valleys
will recur at the some slowly-varying maximum and minimum inten-
sity levels, where the amplitude functiona(x1; x2) is used to cap-
ture the variation (see Fig. 1). Under this assumption, we can pro-
vide the scale of the�1-coordinate to be proportional to the change
in image intensity��1 = �k�Ik for some constant� [12], [14]. For
example, in wavelength units, the distance between a valley and a peak
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Fig. 2. Comparison of the (a) NIST-enhanced fingerprint and (b) the fundamental FM component. It is clear that the fundamental FM component has much better
defined ridges.

is 0.5, while the distance between any two valleys is 1. It is unreal-
istic to expect that the image intensity between peaks will follow a
nice sinusoidal pattern. Instead, we only assume that the image inten-
sity values repeat themselves from peak to peak, so that ifT = 2�
denotes the normalized period, we have the important approximation:
f(�1(x1; x2) + T ) � f(�1(x1; x2)).

Using this approximation, we arrive at a Fourier series expansion
approximation forf

f(�1; �2) �
n

Hn exp[jn�1]:

Then, forI(x1; x2), we have

I(x1; x2) � a(x1; x2)
n

Hn exp[jn�(x1; x2)] (1)

where the subscript has been dropped from the phase function. We note
that examples of computing the coordinate transformation(x1; x2) !
(�1; �2) and its inverse as described in this section have already been
demonstrated in [12] and [14].

III. I SOLATING THE FUNDAMENTAL FM COMPONENT

If we letg denote the impulse response of a linear system, the system
responset(x1; x2) to an image expressed as a sum of AM–FM har-
monics is approximately given by the quasi-eigenfunction approxima-
tion (QEA approximation) [2], [3], [7]

t(x1; x2) �= a(x1; x2)
n

jG[nr�(x1; x2)]jHn

� expfjnr�(x1; x2) + 6 G[nr�(x1; x2)]g (2)

whereG denotes the Fourier transform ofg, and 6 denotes the angle
argument symbol.

Hence, if most of the power in the fundamental AM–FM harmonic
is concentrated in a circular disc of radii�min and�max, we can use
a bandpass filter to isolate the fundamental AM–FM component pro-
vided that�min < kr�k < �max and also�max < knr�k; n > 1.
The requirement that the second inequality is satisfied over the entire
fingerprint is overly restrictive. A much more realistic assumption is
to require that the “local” power captured in the fundamental AM–FM
componentH1a(x1; x2)G(r�) is always higher than the power cap-
tured by any other harmonicHna(x1; x2)G(nr�), n > 1. Since
we view the AM–FM series of (1) as the Fourier series of a proto-
type image undergoing a coordinate transformation, we note that the

“local” power assumption is satisfied if the fundamental harmonic in
the original Fourier series captures more energy than any other har-
monic jH1j > jHnj; n > 1 (a very reasonable assumption that is
expected to hold).

After visual inspection of the bandpass filter results for the first 20
NIST fingerprints, the radii for the bandpass filter were experimentally
determined to be�min = 0:25 and�max = 1:25. For implementing
the bandpass filter, the desired impulse response was set to the differ-
ence of the impulse response for a lowpass filter at�max = 1:25, and
the impulse response of another lowpass filter at�min = 0:25. For the
lowpass filters, we used

h(n1; n2) =
R

2�

J1 R n2
1
+ n2

2

n2
1
+ n2

2

whereh(n1; n2) denotes the impulse response for the first filterR =
�min, the second filterR = �max, andJ1 denotes the Bessel function
of the first kind.

Next, assuming that the “local” power assumption holds, we apply
the DCA in order to estimate the phase of the fundamental FM har-
monic:exp[j�(x1; x2)].

IV. ESTIMATING THE FUNDAMENTAL FM COMPONENT

We now summarize the DCA [2], [7]. First, we apply a bandpass
filter that removes the near-DC components. This is accomplished by
1) filtering the image with a lowpass filter that is supported within a
circular disk centered at the origin of the frequency plane and 2) sub-
stracting the lowpass filtered image from the original image. We then
proceed to the second step with the resulting image.

We apply a collection of Gabor (bandpass) channel filters
g1; g2; . . . ; gM to the new imageI , obtaining output images
t1; t2; . . . ; tM , satisfyingti = I � gi where� is convolution.

LetG1; G2; . . . ; GM denote the frequency responses of the Gabor
channel filters. Using the Quasi-Eigenfunction Approximation (QEA),
the filter outputs are approximately given by [2], [3], [7]

ti(x1; x2) �= a(x1; x2)
n

jGi[nr�i(x1; x2)]jHi

� expfjnr�i(x1; x2) + 6 Gi[nr�i(x1; x2)]g:

We obtain estimates for the instantaneous frequency

r�i(x1; x2) �= Real
rti(x1; x2)

jti(x1; x2)
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and the phase

�i(x1; x2) �= arctan
Imaginaryfti(x1; x2)g

Realfti(x1; x2)g
:

Using the instantaneous frequency estimater�(x1; x2)and the fre-
quency response of the Gabor channelGi, we estimate the amplitude

a(x1; x2) �=
ti(x1; x2)

Gi(r�(x1; x2))
:

Having generated estimates for each channel filter, we next select a
particular channel for each pixel. For each pixel, we select the channel
with the maximum amplitude estimate

cmax(x1; x2) = argmax
i

ai(x1; x2):

As we have explained, this channel is expected to capture contributions
from the fundamental AM–FM harmonic only (no other harmonics).
Then, the fundamental AM–FM component estimates are given by

r�(x1; x2) �=r�c max(x1; x2)

�(x1; x2) �=�c max(x1; x2)

a(x1; x2) �= ac max(x1; x2):

The performance of the dominant component analysis algorithm has
been studied quite extensively [2], [3], [7].

We display a typical FM component in Fig. 2. We note that all am-
plitude related ink variations have been eliminated. Also, due to the
bandpass filtering, the background of the image appears as a low-fre-
quency component. As we shall explain in Section V, for the purposes
of fingerprint classification, there is no need to segment the low fre-
quency components of the background from the actual fingerprint.

V. FINGERPRINT CLASSIFICATION USING

THE FUNDAMENTAL FM COMPONENT

Fingerprint classification using PCASYS of the NIST consists of 1)
feature extraction, followed by 2) feature classification. We will briefly
describe each process separately (see [4] for more details).

To extract the fingerprint features, each fingerprint is first segmented
and then enhanced. For performing the AM–FM fingerprint classifica-
tion, we also used the NIST segmentation algorithm. However, instead
of using the NIST-enhanced image, we used the fundamental FM har-
monic. The fundamental FM harmonicexp[j�(x1; x2)] is estimated
as explained in the preceeding section (usingM = 48 Gabor filters).

The algorithm used by the NIST enhancer can be summarized in
three steps [4]. First, partition the image into overlapping32�32 pixel
blocks, which are taken 24 pixels apart. Second, zero-out both low- and
high-frequency components of the DFT spectrum, and modify the re-
maining DFT elements~X using: ~Y = j ~Xj0:3 ~X. Third, evaluate the
inverse DFT of~Y to getC, center the image pixels around the max-
imum value inC and rescale image intensity values to be in the range
of zero to 255.

For comparison, the fundamental FM component and the NIST en-
hanced image are both shown for a typical fingerprint in Fig. 2. We
note that small scars are removed from the FM image. However, over
large noisy regions, phase estimates are erroneous; as demonstrated in
the background regions of Fig. 2 (but see more recent results in [12]
and [13]).

Notice that the FM image possesses clearly defined ridges, free of
any ink variations. This facilitates the next step of estimating the orien-
tation of each ridge. Furthermore, since the NIST algorithm estimates

Fig. 3. Overall classification results for the NIST and the AM–FM methods.
The first 100 NIST fingerprints were used for training, while the second set
of 100 NIST fingerprints were used for testing the classifier. On the vertical
axis, we plot the percentage of incorrectly classified fingerprints, while on the
horizontal axis, we show how the number of components of the classification
vectors that were used for the optimal smoothing factor�. Note that a smaller
number of components capturing the fingerprint structure around the main
fingerprint region is better than including a large number of components (which
would surely capture the periphery of the fingerprints which is irrelevant to the
classification problem).

orientations throughout the fingerprint, there is no need to further seg-
ment the fundamental FM harmonic from its background.

Instead of using the NIST algorithm for estimating the orientations,
we expect that if we used instantaneous frequency vector estimates, we
would obtain more accurate estimates of the ridge orientations. Never-
theless, since orientation estimates are quantized to only eight quanti-
zation levels in a 30� 28 array, we believe that the added accuracy is
likely to be proven unnecessary.

We performed neural-net training based on orientations estimated
on the FM images, and compared the fingerprint classification results
against training and classification using orientations estimated from the
original, NIST enhanced images. For reducing the number of classifi-
cation vector components, a standard Karhunen–Loeve (KL) transform
was used. For the KL transform, the sample covariance matrix of the
full classification vectors is initially computed. Then, for using onlyn
vector components, then dominant eigenvalue/eigenvector pairs of the
sample covariance matrix are computed. Themth vector component is
set to the inner product between the full vector and themth eigenvector.

For classification, we used a probabilistic neural network (PNN).
The PNN falls within the category of nearest-neighbor classifiers [15],
[4]. For a given vectorw to be classified, an activationai is computed
for each of the six classes of fingerprints (i = 1; . . . ; 6). The activation
ai is defined to be the total distance ofw from each of theMi prototype
fingerprint vectorsx(i)j that belong to theith class

ai =

M

j=1

exp �� w � x
(i)
j

T

w � x
(i)
j

where � is a smoothing factor. The normalized activations
~ai = ai=

N

i=1 ai provides a confidence estimate for the hy-
pothesis thatw belongs to classi. We then classifyw into the class
that yields the highest confidence. An important advantage of the PNN
is that it provides confidence estimates for our classification decision.
Also, to avoid dependence on the smoothing factor�, the value of�
was set to the one that yielded the minimum misclassification error on
the training set.
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The results are summarized in Fig. 3. In all the examples, we used
the first 100 fingerprints for feature extraction and training the NIST
probabilistic neural network [15], and then used a second set of 100
different fingerprints for classification. The following six fingerprint
classes are used in the classification

1) arch;
2) left loop;
3) right loop;
4) tented arch;
5) whorl;
6) scar.

The FM enhanced images consistently outperformed the NIST stan-
dard for all the different feature sets and all different learning rates
that we have attempted. The performance improvements are signifi-
cant, with the percent error for the FM algorithm approximately half of
the corresponding error for the original NIST algorithm.

VI. CONCLUSION AND FUTURE WORK

AM–FM models are well suited for fingerprint analysis and classi-
fication. We believe that future research on fingerprint classification
will benefit from the use of AM–FM features. A variety of different
AM–FM features have been investigated in [12], but the analysis still
needs to be extended and proven on large fingerprint datasets. We be-
lieve that this paper demonstrated that taking this direction is indeed
promising.
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