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Abstract—This study introduces the use of multiscale amplitude
modulation–frequency modulation (AM–FM) texture analysis of
multiple sclerosis (MS) using magnetic resonance (MR) images
from brain. Clinically, there is interest in identifying potential as-
sociations between lesion texture and disease progression, and in
relating texture features with relevant clinical indexes, such as the
expanded disability status scale (EDSS). This longitudinal study
explores the application of 2-D AM–FM analysis of brain white
matter MS lesions to quantify and monitor disease load. To this
end, MS lesions and normal-appearing white matter (NAWM) from
MS patients, as well as normal white matter (NWM) from healthy
volunteers, were segmented on transverse T2-weighted images ob-
tained from serial brain MR imaging (MRI) scans (0 and 6–12
months). The instantaneous amplitude (IA), the magnitude of the
instantaneous frequency (IF), and the IF angle were extracted from
each segmented region at different scales. The findings suggest
that AM–FM characteristics succeed in differentiating 1) between
NWM and lesions; 2) between NAWM and lesions; and 3) between
NWM and NAWM. A support vector machine (SVM) classifier
succeeded in differentiating between patients that, two years af-
ter the initial MRI scan, acquired an EDSS ≤ 2 from those with
EDSS > 2 (correct classification rate = 86%). The best classi-
fication results were obtained from including the combination of
the low-scale IA and IF magnitude with the medium-scale IA. The
AM–FM features provide complementary information to classical
texture analysis features like the gray-scale median, contrast, and
coarseness. The findings of this study provide evidence that AM–
FM features may have a potential role as surrogate markers of
lesion load in MS.
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I. INTRODUCTION

MULTIPLE sclerosis (MS) is a chronic autoimmune dis-
ease that results in multiple areas of inflammatory de-

myelination within the central nervous system. Within individ-
uals, the clinical manifestations are unpredictable, particularly
with regard to the development of disability [1], [2]. MS diag-
nosis made by a specialized neurologist is primarily based on
clinical signs and symptoms, while several paraclinical tests can
help in disease verification. Magnetic resonance imaging (MRI)
can depict the multifocal lesions in the central nervous system
most often associated with MS and, therefore, plays a significant
role in detecting disease onset and monitoring disease activity
[1]. Many attempts have been made to use MRI to assess dis-
ease burden, lesion evolution, correlation with clinical status,
as well as treatment effectiveness in MS. Correlations between
changes in disability and brain MRI activity have been reported
[2], as well as classification of disease subgroups based on brain
MRI histograms [3]. On the other hand, conventional MRI tech-
niques, such as T2-weighted imaging tend to depict severe tissue
destruction and their outcomes correlate poorly with the clinical
status of MS patients and manifested clinical activity [4]. This
lack of correlation is mainly due to the presence of additional
microscopic abnormalities in the so-called normal-appearing
white matter (NAWM) in which T2-weignhted imaging fails
to unveil. The problem has been termed the clinic-radiological
paradox [5]. In addition, conventional MRI methods currently
used in MS are not reliable for predicting the clinical evolution
of the disease. Thus, there is a need for novel techniques that
can lead to improved specificity and sensitivity in diagnosing
and monitoring MS [6].

Texture feature analysis can be used to analyze macroscopic
lesions and other macroscopic changes in the MS brains that go
beyond the conventional measures of lesion volume and num-
ber [1]. Texture analysis is also used widely in neuro MRI to
enable disease characterization and quantification. Here, texture
features are used to detect and quantitatively evaluate not only
macroscopic changes but also subtle signal intensity variations.
Herlidou-Même et al. [7] showed how texture features can re-
veal discriminant factors for differentiating between normal and
abnormal tissue, and also for image segmentation. The use of
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texture analysis for classification of active and nonactive brain
lesions in MS patients from brain MRI was investigated in [8].
Here, it was shown that active lesions could be identified with-
out frequent gadolinium injections, using run length analysis
criteria. In [9], the performance of texture analysis concerning
discrimination between MS lesions, NAWM, and normal white
matter (NWM) from healthy controls was investigated by using
linear discriminant analysis. The results suggested that texture
features can support early diagnosis in MS. When a combined
set of texture features was used [9], similar findings were re-
ported. Significant differences in texture between normal and
abnormal spinal cord in MS patients, as well as significant cor-
relation between texture features and disability were found in
[10]. The median value increase of these texture features sug-
gests that the lesions texture in MS patients is less homoge-
neous and more complex than the corresponding healthy tissue
(NWM) in healthy subjects [10]. Similar findings were also de-
scribed in [11] and [12], where it was shown that the median
values of lesions texture features, such as standard deviation,
median, sum-of-squares variance, contrast, sum average, sum
variance, difference variance, and difference entropy increased
significantly with the progression of the MS disease when com-
pared to NWM tissue. Statistical analysis has shown (using the
spatial gray-level dependence matrices) that there is a signif-
icant difference between NAWM, NWM, and lesions. These
findings may be beneficial in the research of early diagnosis and
treatment decision in MS.

Theodoarakis et al. [13] developed a pattern-recognition sys-
tem for the discrimination of MS from cerebral microangiopathy
lesions based on computer-assisted texture analysis of MR im-
ages. It was shown that, MS regions were darker, of higher con-
trast, less homogeneous, and rougher as compared to cerebral
microangiopathy.

Different-intensity normalization schemes of brain images
were investigated in a longitudinal study in [15]. It was
shown that significant error reduction could be achieved by
applying tissue-specific intensity normalization and partial-
volume filtering. It was also shown that different normaliza-
tion methods and different acquisition protocols influence the
texture-analysis results. Image-intensity normalization is also
needed for tissue classification [14]. The influence of different
MRI acquisition protocols and four gray-level intensity nor-
malization methods on the discrimination power on the tex-
ture analysis of two classes of samples were investigated in
[15].

To introduce the objectives of our study, an example in Fig. 1
is displayed. Fig. 1(a) and (b) shows two transaxial T2-weighted
MR images at the same level of the brain acquired from the same
patient. The image in Fig. 1(a) corresponds to the initial diag-
nosis of a clinical isolated syndrome (CIS) of MS. A second
MR scan acquired within the time framework of 6–12 months
later is shown in Fig. 1(b). The two delineated regions of in-
terest (ROIs) corresponding to the same MS plaque are also
depicted. Fig. 1(c) shows the magnified segmented lesions from
Fig. 1(a) and (b) (original images were acquired at a sampling
rate of 2.226 pixels/mm). To maintain physical perspective, the
bar below the lesions shows the corresponding physical size of

Fig. 1. ROIs drawn on MR images of the brain obtained from an MS patient
at (a) 0 and (b) 6–12 months. (c) Magnified segmented lesions from (a) and (b)
that are acquired at a pixel resolution of 2.226 pixels/mm. The bar below the
lesions shows the size of 10 mm. The image intensity median and interquartile
range (IQR) of the segmented lesions at 0 and 6–12 months were 108 and 9.6
versus 99 and 11.8, respectively.

10 mm. In what follows, texture analysis refers to the image
processing of the extracted ROIs.

Our primary objective here is to develop new texture classifi-
cation methods, which can be used to differentiate between MS
brain lesions that will develop into advanced diseased stages,
from lesions that will develop into mild disease stages. This
application investigates the use of new multiscale amplitude-
modulation frequency-modulation (AM–FM) features extracted
from multiple frequency scales [16]–[19]; furthermore, it also
investigates the use of multiscale AM–FM features to detect
significant differences between NWM and NAWM, as well as
for better tissue discrimination between them. Significant dif-
ferences between NWM and NAWM may be critical to the
early diagnosis of the disease, while better tissue discrimina-
tion may be valuable as a prognostic factor in the assessment
of the natural evolution of the disease. Since the use of quanti-
tative MRI analysis as a surrogate outcome measure in clinical
trials presupposes a close relationship between the change in
the extracted features and the clinical status, and rate of devel-
opment of disability, patient images acquired at two different
time points were analyzed and AM–FM texture findings with
disability assessment scales were correlated.

The promising role of AM–FM methods in medical image
analysis can be summarized in that [19]: 1) they provide physi-
cally meaningful texture features, over multiple scales, at pixel-
level resolution; 2) images can be reconstructed from AM–FM
components; 3) AM–FM decompositions can be extracted for
different frequency coverage; and 4) the recent development
of robust methods for AM–FM demodulation allow for accu-
rate decompositions (see recent examples in [17]). The advan-
tages of the AM–FM approach will become more apparent in
Section II.

While there are several studies reported earlier suggesting that
the progression of the textural characteristics may be associated
with disease progression in MS subjects [7]–[15], [20], no other
studies reported in the literature were found, where the AM–FM
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Fig. 2. MRI-image-analysis system diagram.

characteristics (or any other multiscale features) of the brain
MRI lesions have been shown to be associated with the disease
progression. Preliminary findings of this study, for the AM–
FM analysis of NAWM in MS subjects, were also published in
[21] and [22]. The use of standard textural features has been
presented in [10]–[12].

II. MATERIALS AND METHODS

The system diagram in Fig. 2 presents the different processing
blocks. In what follows, each block will be presented in detail.

A. Study Group and MRI Acquisition

Thirty-eight patients (17 males, and 21 females), aged 34.1 ±
10.5 (mean age ± standard deviation), with a CIS of MS and
MRI-detectable brain lesions were scanned twice at 1.5 T with
an interval of 6–12 months. The transverse MR images used
for the analysis were obtained using a T2-weighted turbo spin-
echo pulse sequence (repetition time = 4408 ms, echo time =
100 ms, echo spacing = 10.8 ms). The reconstructed image had
a slice thickness of 5 mm and a field of view of 230 mm with
a pixel resolution of 2.226 pixels/mm. Standardized planning
procedures were followed during each MRI examination.

Initial diagnosis was made by an experienced MS neurologist
who referred patients for a baseline MRI upon diagnosis and
clinically followed all patients for over two years. All patients
remained untreated between the baseline MRI and the repeat
MRI. They were also subjected to an expanded disability status
scale (EDSS) test two years after initial diagnosis to quantify
disability [20]. They were clinically followed and examined
by an MS neurologist (coauthor M. Pantziaris) following the
initial MRI (time 0) and also at two years later (time 6–12).
At the initial scan, the stage of the disease was evaluated using
the EDSS score [20]. This gave starting EDSS scores with a
mean of 2.07 and a standard deviation of 0.75. The number of
subjects with EDSS ≤ 2 and EDSS > 2 two years after the
first examination were 23 and 15, respectively. Additionally,
the brains of 20 healthy, age-matched (mean ± SD: 30.8 ±
7.6) volunteers (8 males, and 12 females) were MRI-scanned to
allow segmentation and analysis of normal brain white matter.
The subjects were referred for the MRI scans to Ayios Therissos
Medical Diagnostic Center (coauthor, I. Seimenis).

B. Manual Delineations of the ROIs

All detectable brain lesions were identified and segmented by
an experienced MS neurologist and confirmed by a radiologist.
Only well-defined areas of hyperintensity on T2-weighted MR
images were considered as MS plaques. The neurologist manu-
ally delineated (using the mouse) the brain lesions by selecting
consecutive points at the visually defined borders between the
lesions and the adjacent NAWM on the acquired transverse
T2-weigted sections. The manual delineations were performed
using a graphical user interface implemented in MATLAB de-
veloped by our group. For each brain MRI scan of MS patients,
ten discrete round ROIs with an approximate radius of 25 pix-
els were also drawn in brain white matter, usually contralateral
to the lesion side, to represent NAWM. Every effort was made
to avoid white matter areas with subtle, patchy, and diffuse
abnormal signal intensities. Finally, the neurologist manually
segmented cerebrovascular fluid (CSF) areas as well as the ar-
eas with air (sinuses) from all MS brain scans. Similarly, ROIs
representing NWM, CSF, and air from the sinuses were arbitrar-
ily segmented from the brain scans of the 20 healthy subjects.
Manual segmentation by the MS expert was performed in a
blinded manner, without the possibility of identifying the sub-
ject, the time-point of the exam, or the clinical findings. The se-
lected points and delineations were saved to be used for texture
analysis

C. Interscan Intensity Normalization

A normalization algorithm adjusts distributions of each
follow-up scan to match those of the chosen baseline scan in
order to improve image compatibility and facilitate MR image
comparability between serial MR scans [14], such as those ob-
tained from the MS group of this study. In a recent study [23],
where six different interscan normalization techniques for MRI
were compared, it was shown that a normalization method based
on histogram normalization proposed in [24], in which the orig-
inal histogram of the whole image is stretched and shifted in
order to cover a wider dynamic range, yields better results than
the other methods tested. The original image histogram was
stretched, and shifted using the following equation [23], [24]:

f(x, y) =
gHIR − gLIR

gmax − gmin
(g(x, y) − gmin) + gLIR (1)
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Fig. 3. Spectral coverage of dyadic filterbank showing low-(L), medium-(M),
and high-(H) frequency-scale channel filters. Based on the sampling period of
2.226 pixels/mm, we need to multiply the discrete space frequencies of this
figure by 1.113/π to convert to cycles per millimeter (in each dimension). Due
to the inherent symmetry of frequency components for real images, expressed
as F (u, v) = F ∗ (−u,−v) in the spectral domain, we note that the upper
two quadrants can be inferred from the lower ones. See [18] for details on the
method.

where g(x, y) denotes the original image intensity, gmin repre-
sents the minimum value, gmax represents the maximum value,
f(x, y) represents the output image with a minimum level of
gLIR and a maximum level of gHIR . The mean intensity of the
cerebrospinal fluid is used to set gmax , and the mean intensity of
the sinuses to set gmin . It was shown in [23] that this normaliza-
tion method allows for meaningful comparisons between brain
MR images acquired at different times.

D. Amplitude-Modulation Frequency-Modulation
(AM–FM) Methods

Over each segmented region, a multiscale AM–FM repre-
sentation (see [17], [18]) was computed using the following
equation:

I(x, y) =
M∑

n=1

an (x, y) cos ϕn (x, y) (2)

where n = 1, 2, . . ., M denote different scales, (x, y) define
the spatial coordinates, an denote slowly varying instantaneous-
amplitude (IA) functions and ϕn denote the instantaneous-phase
(IP) functions. In this paper, the low, medium, and high scales
were considered (M = 3). Here, the FM components cos ϕn

capture fast-changing texture components. The IA can be used
to quantify the contributions from each component. The instan-
taneous frequency (IF) functions are defined in terms of the
gradient of the phase.

AM–FM demodulation was applied over a dyadic filterbank
(see Fig. 3) after prefiltering using an extended 2-D Hilbert filter.
Let IAS be IAS = I + jH2-D{I}, where H2-D denotes the 2-D
Hilbert operator described in [18]. The 2-D Hilbert operator is
simply the standard 1-D Hilbert operator operating along the
columns of the image.

The bandpass filters were grouped into low (L), medium
(M), and high (H) components (see Fig. 3). For sampling at
2.226 pixels/mm, multiplying the discrete spatial frequencies
by 2.226/(2π) converts them (componentwise) into cycles per

millimeter. To see this, note that the π-frequency produces
samples of 1, −1, 1, −1, . . . at 0.5 cycles/pixel. For the low
frequencies, we have discrete frequencies from the minimum
IF magnitude of (0, π/8) corresponding to 0.1391 cycles/mm,
and to a maximum IF magnitude of (π/4, π/4) at 0.3935 cy-
cles/mm. For the medium frequencies, we have the minimum at
(0, π/4) corresponding to 0.2782 cycles/mm, and a maximum
at (π/2, π/2) corresponding to 0.7870 cycles/mm. For the high
frequencies, we have the minimum frequency at (0,π/2) cor-
responding to 0.5565 cycles/mm, and a maximum of (π,π) at
1.5740 cycles/mm.

In the multiscale AM–FM decomposition, a single AM–FM
component is extracted from each scale. This is accomplished
in a two-step process. First, at every pixel, AM–FM component
estimates generated from each bandpass filter is estimated. Then,
at every pixel, for each scale, the AM–FM component estimates
that gave the largest IA estimate are selected. In other words,
the low-scale component is formed by collecting the dominant,
low-scale bandpass pixel estimates over the segmented ROI. A
similar approach is followed for the medium and high frequency
scales. A summary of how AM–FM components are estimated
from each channel filter is given in the following.

Let f̂AS denote the output of one of the bandpass filers. The
IA and IP are estimated using the following equation [17], [18]:

a(x, y) = |
�

f AS(x, y)| (3)

and

ϕ(x, y) = arctan

(
imag(

�

f AS(x, y))

real(
�

f AS(x, y))

)
. (4)

The IF is computed using a variable-spacing, local phase
(VS-LLP) method as described in [17] and [18] from the
following:

d

dx
φ(x, y) ∼= 1

n1δx
cos−1

(
g(x + n1δx, y) + g(x − n1δx, y)

2g(x, y)

)
(5)

where g(x, y) = f̂AS(x, y)/|f̂AS(x, y)|, and similarly for the
second component of the instantaneous frequency. In (5), n1
is an integer and δx refers to the sampling period along the
x-coordinate direction.

For each lesion, for each frequency-scale band, 32-bin his-
tograms of the dominant IA, IF magnitude (|IF|), and IF an-
gle components are computed. For the IA features, the terms
low-IA, medium-IA, and high-IA refer to IA estimates derived
from the different frequency scales. For the IF, the terms low-IF,
medium-IF, and high-IF to refer to the derived IF magnitude
estimates. The IF magnitude estimates are then normalized to
cycles per millimeter, providing a physically meaningful inter-
pretation of the texture measurements. For the low, medium,
high frequency scales, the following AM–FM histogram com-
binations are used: 1) IA only; 2) IF magnitude (|IF|) only;
3) IA and |IF| together; 4) |IF| and IF angle together; and 5) IA,
|IF|, and IF angle together.

Here, recall that 32 bins for each histogram were used. As
an example, when using IA and |IF| together, a total of 64
bins for the histograms of the IA and the |IF| was achieved.
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Furthermore, note that the combination of IA and |IF| (see case
3)) includes case 1) (IA only) and case 2) (IF magnitude only).
When considering combinations of these histogram features,
redundancy needs to be avoided. Therefore, in this example, the
combination of 1) + 3) or 2) + 3) will never be considered.
Instead, the nonredundant combinations of 1) + 2) and 1) + 4)
are the only ones to consider.

More generally, AM–FM models and methods have been
used in a variety of image- and video-processing applications.
Applications include image reconstruction [16], image retrieval
[25], and video motion analysis [26]. A theoretical framework
for understanding the role of multidimensional frequency mod-
ulation was reported in [27]. Christodoulou et al. [28] compared
AM–FM texture features with classical texture features for the
classification of carotid plaque ultrasound images. The study in-
volved the use of 274 images (see also [29], 137 asymptomatic
subjects and 137 patients). It was shown that the AM–FM texture
features provide better results than the classical texture features.
The best results were obtained when there was a combination of
AM–FM scales, reaching a classification success rate of 71.5%.

E. Statistical Analysis

The Mann–Whitney rank-sum test (for independent samples
of different sizes) [30] was used in order to identify if there
are significant differences (S) or not (NS) between the extracted
AM–FM features. For significant differences, p < 0.05 is re-
quired for comparisons between different groups of subjects.
The median values over the segmented components are used
for investigating the relationships between the 0 and the 6–12
months intervals. Similarly, for comparing independent samples
from equal populations, the Wilcoxon rank-sum test is used [31].
This was also done for normalized image-intensity histograms.

For independent samples of different sizes, the Mann–
Whitney rank-sum test is used for detecting AM–FM feature
differences between NWM, NAWM, and lesions for patients
with an EDSS ≤ 2 and EDSS > 2, two years after the initial
MRI examination. Box plots were used to compare the AM–FM
features between the NAWM and lesions, both at 0 and 6–12
months.

F. Classification and Support Vector Machines

Classification analysis was carried out to classify brain MS
lesions delineated on the baseline MRI scans into two classes
according to the EDSS score that each patient was allocated two
years following initial diagnosis: 1) MS patients with EDSS
≤ 2 and 2) in MS patients with an EDSS > 2. Here, recall
that the EDSS assessment was performed two years following
initial diagnosis (time 0). Thus, the classification goal was to
differentiate between lesions that led to early (EDSS ≤ 2) and
advanced disease cases (EDSS > 2).

As discussed in Section II-D, there are five nonredundant
histogram feature combinations for the low, medium, and high
scales. Thus, there are 15 (5 × 3) independent classifiers that
were tested. Each classifier was implemented using support vec-
tor machines (SVMs). Here, each SVM uses quadratic kernels
[32] expressed as k(xi, xj ) = (xi · xj )n , where xi and xj are

the data points and n = 2. The area under the ROC curve (AUC)
is used for classifier selection. The classifier-selection rule is
simple. Only classifiers that give more than an AUC of 0.5 are
considered for the multiclassifier system. They are then com-
bined using a simple majority rule.

III. RESULTS

A. AM–FM Decomposition and Feature Examples

Two AM–FM decomposition examples are presented in
Fig. 4. The AM–FM decomposition images were estimated for
four brain lesions from two patients: 1) two brain lesions from
a man in his early 50s with an EDSS score of 1 and 2) two
brain lesions from another man in his early 50s with an EDSS
score of 4. Here, please recall that the EDSS score was obtained
two years after time zero. The goal here is to identify AM–FM
texture features that can be used to differentiate between brain
lesions that are associated with future EDSS scores of EDSS ≤
2 and EDSS > 2. It should also be noted that the brain lesions,
presented in Fig. 4, represent selected lesions extracted from the
two subjects (and are not representative of the whole dataset).

The original brain lesions are given in the top row of Fig. 4.
The low-, medium-, and high-frequency-scale features are given
in rows (b)–(d) (see caption for details). It is interesting to note
significant differences in the distribution of IA between the
left-half and right-half brain lesion plots. For all scales, for the
advanced cases (right-half plots), the central portions of the
brain lesions give significantly lower IA values than what the
corresponding values for the early disease cases (left-half plots).
The IF magnitude and FM reconstruction plots for the advanced
disease lesions also appear to exhibit much finer granularity
than for the early disease lesions. There is clearly much more
uniformity in the left-half plots as opposed to the right-half
plots. The lack of AM–FM feature uniformity appears to be a
characteristic of the disease.

Fig. 5 presents the box plots for the medium-frequency-scale
IA and IF magnitude for all subjects investigated (N = 38). There
are also significant differences in the box plots of Fig. 5. From
the plots of Fig. 5(a), a significant increase in the median IA can
be seen, when comparing NWM to NAWM. On the other hand,
there is also a significant decrease in IF magnitude, between
NWM and NAWM. The situation is reversed in the plots of
Fig. 5(b). Here. There is a significant decrease in the IA between
sinuses and brain lesions. The median IF magnitude shows the
opposite trend; it increases. In terms of brain lesion progression,
it is interesting to note an increase in median IA accompanied
by a decrease in IF magnitude. As will be discussed later in
Section III-C, the medium-scale IA histogram gave excellent
classification results.

B. Statistical Analysis

Table I presents the statistical analysis results between
NAWM and the brain lesions recorded at 0 and 6–12 months,
as well as between MS patients and healthy volunteers. Here,
the primary goal is the detection of significant changes in the
IA and IF components among the normal, normal-appearing,
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Fig. 4. Multiscale AM–FM analysis for MS brain lesions. The low-(L), medium-(M), and high-(H) frequency scales are given in columns. Four MS lesions
imaged at 0 and 6–12 months are shown: one from a 51-year-old male with EDSS = 1 (left) and one from another male of similar age with EDSS = 4. (a) Original
lesions. (b) Logarithmic views of the IA. (c) IF magnitude (|IF|) of the lesions. (d) FM reconstructions of the lesions. Note that IF estimates with magnitudes
outside the support of the low-, medium-, and high-scale passbands are presented in black. Thus, we only display high-confidence estimates in this Figure. The
images were acquired at 2.226 pixels/mm. Also, note that the EDSS scores we assessed two years after the initial exam (0 months time point).

and diseased tissue. For NWM versus NAWM at 0 and 6–12
months, all studied components demonstrated significant differ-
ences. For NWM versus lesions at 0 and 6–12 months, all com-
ponents except HIF gave significant differences. For the NAWM
at 0 and 6–12 months versus lesions at 0 and 6–12 months, the
low- and medium-frequency IA showed consistently significant
differences. Only the medium-frequency IA component differed
significantly between lesions at 0 months and lesions at 6–12
months, while only the low IF component managed to statisti-
cally resolve temporal differences for NAWM.

Table II presents the statistical comparisons for NAWM and
brain lesions recorded at 0 and 6–12 months between patients
allocated an EDSS score lower than or equal to 2.0 (≤2.0)
and patients acquiring an EDSS score greater than 2.0 (>2.0).
It is shown that for NAWM at 0 months, there is significant
difference for patients with EDSS ≤ 2 versus those with EDSS
> 2, for the low-, medium-, and high-frequency IA, whereas
for 6–12 months, there is significant difference only for the
medium IA. Regarding lesions, between the two patient groups,
significant differences were seen for the medium-IA and the
high-IA components at both 0 months and at 6–12 months. Also,
for patients acquiring an EDSS ≤ 2, the medium IA component
showed a statistically significant temporal dependency.

C. Brain Lesion Classification Using AM–FM Features

Results from the independent frequency-scale histogram clas-
sifiers are presented in Table III. The best results from com-

bining the individual frequency-scale histogram classifiers are
given in Table IV. Here, recall that the goal is to differentiate
baseline MRI lesions between patients that ended up with an
EDSS ≤ 2.0 from patients that gave EDSS > 2.0 (two years
later).

In Table III, classification results are presented in terms of
sensitivity (Sen.), specificity (Spc.), correct classification rate
(CR, fraction of lesions correctly classified (max = 1.0)), and
AUC. The AUC is used for selecting the best AM–FM histogram
features. Among the individual AM–FM histogram classifiers,
the medium-frequency IA gave the best results (AUC = 0.76).
It is noted that the medium-frequency-IA classifier is part of
the best multiclassifier systems given in Table IV. It is also
interesting to note that when the low- or the high- frequency
features are used, the IA is always used. Furthermore, the low-
frequency IA histogram is always used in the best multiclassifier
systems of Table IV.

In terms of the correct CR, the best results were given by two
different multiclassifier systems, each giving a correct CR of
0.86. Both cases include the classifier that uses all histograms
from the low-frequency-scale- (IA&|IF|&IF angle) and the clas-
sifier that uses the medium-frequency-scale IA histogram. The
only difference between them comes from either including the
IF angle (as in IA&|IF|&IF angle) or excluding it (as in IA&|IF|
only). The use of the IF angle gave a sensitivity of 0.71 and
specificity of 0.95. The exclusion of the IF angle gave a sensi-
tivity of 0.79 and a specificity of 0.90. In terms of sensitivity,
it is interesting to note that a sensitivity of 0.86 (specificity =
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Fig. 5. Box plots for the medium-frequency-scale IA and IF magnitudes for all
subjects investigated (N = 38). From each patient, we extract the median values
of the IA and the IF over all the ROIs (not to be confused with the medium-
frequency scale). The box plots represent the distributions of the median values.
We have the medium-scale IA (MIA) plots in the top row and the medium-scale
IF magnitude in the bottom row. (a) Top figure box plots of the distribution of
the median IA for the NWM and the NAWM at 0 and 6–12 months (NWM_IA,
NAWMW_IA_0, NAWM_IA_6). Bottom figure box plots of the distribution
of the median IF magnitude for the NWM and NAWM at 0 and 6–12 months
(NWM_IF, NAWM_IF_0, NAWM_IF_6). (b) Top figure plots of the distribution
of the median IA values for the sinuses (S_IA_0, S_IA_6) and the lesions
(L_IA_0, L_IA_6) at 0 and 6–12 moths. The bottom figure shows the distribution
of the median IF magnitude plotted for the sinuses (S_IF_0, S_IF_6) and the
lesions (L_IF_0, L_IF_6) at 0 and 6–12 months, respectively. Interquartile range
(IQR) values are shown above or below the box plots. In each plot, we display the
median, lower, and upper quartiles and confidence interval around the median.
Straight lines connect the nearest observations within 1.5 of the IQR of the
lower and upper quartiles. Unfilled circles indicate possible outliers with values
beyond the ends of the 1.5 × IQR. The IF magnitude is expressed in cycles per
millimeter.

0.81) was obtained by simply using the low-scale IA&|IF| with
the medium-scale IA.

In terms of execution times, the SVM classification algo-
rithms were tested using a Pentium IV (2.8-GHz with 3.5-GB
RAM, Microsoft Windows XP Professional, version 2002, ser-
vice pack 3). Training and testing takes 12.8 s per classifier. The
multiclassifier system only required 0.063 s to select through
the best single classifiers and test them.

IV. DISCUSSION AND FUTURE WORK

The objective of this study was to investigate whether changes
in AM–FM characteristics can be associated with MS disease
progression. AM–FM features were extracted and investigated
based on statistical measures and univariate statistical analysis.
Image analysis is based on the manually segmented MS lesions
from the MRI scans of the brain of 38 subjects with CIS, and
the NAWM areas from the same MRI scans of the brain of the
same patients were used in an attempt to quantify pathologi-
cal changes that occur in MS. The population sample used in
our study represents more that 50% of CIS cases diagnosed in

TABLE I
STATISTICALLY SIGNIFICANT DIFFERENCES BETWEEN AM–FM FEATURES

EXTRACTED FROM THE NWM, NAWM, AND BRAIN LESIONS. WE ANALYZE

THE LOW-, MEDIUM-, AND HIGH-FREQUENCY-SCALE IA AND |IF| (IA/IF).
HERE, WE ARE USING THE WILCOXON RANK-SUM TEST AT p < 0.05.

SIGNIFICANT DIFFERENCE IS DEPICTED WITH THE NAME OF THE COMPONENT,
WHEREAS “-” DENOTES NO SIGNIFICANT DIFFERENCE

TABLE II
COMPARISON FOR THE LOW, MEDIUM AND HIGH-FREQUENCY-SCALE IA AND

|IF| (IA/IF) COMPONENTS BETWEEN PATIENTS WITH EDSS ≤ 2 AND EDSS>2
BASED ON THE WILCOXON RANK-SUM TEST AT p < 0.05. SIGNIFICANT

DIFFERENCE IS DEPICTED WITH THE NAME OF THE COMPONENT, WHEREAS

“-” DENOTES NO SIGNIFICANT DIFFERENCE. THE NUMBER OF SUBJECTS WITH

EDSS ≤ 2 AND EDSS > 2 WERE 23 AND 15, RESPECTIVELY

the Cypriot population within the time span of two years. All
subjects were scanned twice with an interval of 6–12 months.

The results indicate that several AM–FM features can be
used to differentiate between brain lesions that lead to mini-
mal (EDSS ≤ 2.0) and mild clinical signs (EDSS > 2.0). The
IA histograms from all frequency scales contributed to a multi-
classifier system that gave 86% correct CR. The best classifier
results also used the IF magnitude from both the low- and the
high-frequency scales. It was shown from the results of Table II
that both the medium-frequency-scale and high-frequency-scale
IAs also gave significant differences between the two cases
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TABLE III
CLASSIFICATION RESULTS USING THE SVM CLASSIFIER IN TERMS OF SENSITIVITY (SEN.), SPECIFICITY (SPC.), AUC, AND CR USING LOW-, MEDIUM-, AND

HIGH-FREQUENCY COMPONENTS FOR DIFFERENTIATING LESIONS AT 0 MONTHS BETWEEN PATIENTS WITH EDSS ≤ 2 AND EDSS > 2. AUC VALUES BIGGER

THAN 0.5 ARE GIVEN IN BOLD FACE

TABLE IV
BEST BRAIN LESION CLASSIFICATION RESULTS FOR DIFFERENTIATING

BETWEEN CASES OF EDSS ≤ 2 VERSUS EDSS > 2 AFTER COMBINING THE

INDEPENDENT HISTOGRAM CLASSIFIERS FROM TABLE III USING A VOTING

SYSTEM. WE EXAMINED ALL POSSIBLE VOTING COMBINATIONS FOR AUC
LARGER THAN 0.5. WE PRESENT THE BEST FINAL RESULTS IN TERMS OF THE

CORRECT RATE (CR). FOR EACH RESULT, WE ALSO PRESENT THE

SENSITIVITY (SEN.) AND SPECIFICITY (SPC.) VALUES. WE SHOW FOR EACH

SCALE WHICH FEATURES WERE USED. WE USE “-” TO INDICATE THAT A

SCALE WAS NOT USED. HERE, WE USE A COMMA “,” TO INDICATE THAT WE

ARE COMBINING INDEPENDENT SVM CLASSIFIERS. THUS, “IA, |IF|” REFERS

TO THE COMBINATION OF TWO DIFFERENT CLASSIFIERS. IN CONTRAST, WE

USE “&” TO INDICATE THAT WE ARE CONSIDERING THE CONCATENATION OF

HISTOGRAMS INTO A SINGLE AM–FM FEATURE. THUS, “IA&|IF|&IF ANGLE”
REFERS TO THE SINGLE SVM CLASSIFIER THAT COMBINES THE HISTOGRAMS

FROM THE IA, |IF|, AND IF ANGLE

(EDSS ≤ 2 versus EDSS > 2). Among all AM–FM features,
the medium-frequency-IA histogram alone gave the best AUC
results (AUC = 0.76 in Table III).

It is shown from Table II that the medium-frequency-scale IA
can reliably differentiate between NAWM associated with mild
and advanced cases of the disease. Here, there are no significant
differences in NAWM between mild cases collected at 0 and
6–12 months. Similarly, the same observations apply for the
NAWM at 6–12 months (advanced cases).

NWM, NAWM, and brain lesions give AM–FM features with
significant differences. As an example, consider the case of com-
paring NWM and NAWM at 6–12 months. This case is shown
in the first row, second column of the Table I. Here, the low-
frequency, medium-frequency, and/or high-frequency IA values
can be used to differentiate between NWM and NAWM at 6–
12 months. Similarly, one can alternatively use low-frequency,

medium-frequency, or high-frequency IF to differentiate be-
tween NWM and NAWM at 6–12 months. The combination of
these findings suggests that AM–FM features can be used to re-
liably detect advanced stages of the disease. Furthermore, it was
shown (see second row, second column of Table I), that the low-
frequency component (LIF) can differentiate between NAWM at
early (0 months) and NAWM at advanced (6–12 months) stages
of the disease. The components LIA and MIA can differentiate
between NWM and NAWM (both at 0 and 6–12 months) versus
lesions at both 0 and 6–12 months. Furthermore, the component
MIA can differentiate between lesions at 0 versus 6–12 months.

A. General Discussion

Various studies have been performed in order to establish a
relationship between various gray levels and texture features
[3]–[12]. It was shown in [3] that histograms could characterize
changes between MS lesions and NAWM. It was also shown in
this study that texture features and histograms may be used in
discriminating between segmented areas of normal and abnor-
mal brain tissues.

B. Study Limitations

The MRI images in this study were intensity-normalized
based on the method proposed in [23]. This was done in order
to reduce the effects of image-intensity variation between im-
ages obtained at different time points. The variation in intensity
can have a significant impact when trying to compare between
different images and also when trying to generate global tissue
models for tissue classification [8]. The normalization process
proposed in this study uses prior knowledge of the high- and
low-intensity values of the brain so that the new intensity his-
togram of the lesion has its maximum peak close to its average
gray-scale value [15].

T2-weighted MRI is very sensitive to tissue abnormalities in
human brain, and many histopathological features in MS, such
as edema, gliosis, demyelination, and remyelination, are de-
picted as hyperintensity lesions. It is not sensitive, however,
to discrete tissue damage in NAWM. Since the assessment
of NAWM may provide more information concerning disease
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burden and evolution, the intention here was to characterize
NAWM by using AM–FM features.

The fact that ROI-specific findings were summed up per sub-
ject is a limitation of the current study, since statistical results
may have been distorted to some extent (either by masking dif-
ferences via averaging out subtle changes or by enhancing small
differences through outlier overweighting). More than two time
points for imaging data acquisition would be needed to allow
drawing of reliable conclusions regarding the existence or not
of temporal resolving power of the features computed. In ad-
dition, the interval between the examined time points can be
considered relatively small with respect to disease evolution in
CIS. Although a standardized procedure was followed for brain
MRI planning purposes, image registration between serial scans
was not implemented to ensure maximum compatibility regard-
ing lesion detection and segmentation. Only one observer was
used for ROI delineation and, therefore, no conclusions can be
drawn with regard to reproducibility or interobserver variability.
Regarding texture analysis, the correspondence between texture
features and histological parameters remains a matter of debate,
since MRI image voxel resolution is much lower than the resolu-
tion in histological structures [7]. In addition, AM–FM analysis
presented in this study is dependent [7] on: 1) MR acquisition
parameters; 2) the quality assessment of the MRI device used;
and 3) the methods of image reconstruction and processing.

C. Future Directions

MRI analysis has become a powerful tool in the diagnosis
of brain disease [1]–[9]. Pixel intensity variations between the
same and consecutive MRI scans, i.e., intrascan and interscan
variations, complicate the method of quantitative MRI analysis
[8]. Improvements in the measurement and preprocessing of the
image may, therefore, have a significant impact in the clinical
diagnosis, image analysis, and computer-aided diagnosis. The
simple method of histogram-intensity normalization proposed in
[23] can help in this direction; however, more studies with larger
datasets are required. This will enable an accurate computation
of texture features that may provide information for better and
earlier differentiation between NAWM and MS lesions and in
assessing disease progression.

Further research work on a larger number of subjects is re-
quired for validating the results of this study and for finding
additional AM–FM texture features that may provide informa-
tion to differentiate between NAWM and MS lesions, as well
as for longitudinal monitoring of these lesions. In addition, the
proposed methodology could be possibly used for the assess-
ment of subjects at risk of developing future neurological events
and disease progression as measured by increased EDSS score.
The extracted AM–FM features could possibly offer additional
information of not yet developed lesions. Future studies might
usefully investigate whether the abnormalities of the AM–FM
parameters are predictive of the clinical course (through follow-
up). It would also be useful to explore in more detail, the re-
lationship between specific AM–FM parameters abnormalities
and microscopic pathological abnormalities.
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