
Pipelined Decision Tree Classification
Accelerator Implementation in FPGA (DT-CAIF)

FareenaSaqib, AindrikDutta, JimPlusquellic, PhilipOrtiz, and
Marios S. Pattichis

Abstract—Decision tree classification (DTC) is a widely used technique in data
mining algorithms known for its high accuracy in forecasting. As technology has
progressed and available storage capacity in modern computers increased, the
amount of data available to be processed has also increased substantially, resulting
in much slower induction and classification times. Many parallel implementations of
DTC algorithms have already addressed the issues of reliability and accuracy in the
induction process. In the classification process, larger amounts of data require
proportionately more execution time, thus hindering the performance of legacy
systems. We have devised a pipelined architecture for the implementation of axis
parallel binary DTC that dramatically improves the execution time of the algorithm
while consuming minimal resources in terms of area. Scalability is achieved when
connected to a high-speed communication unit capable of performing data transfers
at a rate similar to that of the DTC engine. We propose a hardware accelerated
solution composed of parallel processing nodes capable of independently
processing data from a streaming source. Each engine processes the data in a
pipelined fashion to use resources more efficiently and increase the achievable
throughput. The results show that this system is 3.5 times faster than the existing
hardware implementation of classification.

Index Terms—Data mining, decision tree classification (DTC), hardware imple-
mentation, FPGA

1 INTRODUCTION

The process of converting unidentified or unprocessed data into
actionable information that is important and valuable to the user is
known as data mining [1]. Recent advances in technology and ever
increasing demands for analyzing larger datasets have created abun-
dant opportunities for algorithmic and architectural development
and innovations. Hence data mining algorithms have become in-
creasingly significant and complex. Similarly there is a great demand
for faster execution of these algorithms, leading to efforts to improve
execution time and resource utilization.

Decision Tree Classification (DTC) is a widely used classification
technique in data mining algorithms. It has applications in daily life;
for example, the detection of spam e-mail messages. It is also used in
highly sophisticated fields of medicine and astronomy. Several
diverse predictive models in classification algorithms including
artificial neural networks [2], decision trees [3] and support vector
machines [4] have also been previously described in the literature. A
number of solutions have also been suggested for hardware imple-
mentation by various authors [5]-[7]. Decision tree classification
techniques categorizes each data records/tuples, having set of attri-
butes/properties into subgroups or classes. Assigning of a category
or class to each input dataset consists of a two-step process in DTC.

The initial step is induction which involves construction of
the decision tree model, where internal nodes and leaves constitute
a decision treemodel. Each internal node has a characteristic splitting
decision and splitting attribute, while the leaves have particular
category classification. Construction of a decision tree model from
a training dataset/tuple constitutes of two phases. A splitting attri-
bute and a split index are chosen by the model during the first phase.
While during the second phase sorting of the tuples among the child
nodes is performedbasedon thedecisionmade in thefirst phase. This
repetitive process is continued till the depth of the tree reaches a
desired level. At this point, the decision tree can be used to predict the
class of an input tuple which has not been classified yet.

The second step is the classification that includes application of
the decision tree model to the test dataset to predict its respective
class. The primary goal of such a classification algorithm is to utilize
the given training dataset to construct a model which subsequently
canbeused to sort unclassifieddatasets into oneof thedefined classes
[8]. Breiman et al. [9] presented decision trees approximately two
decades ago, and described the decision trees as rooted tree struc-
tures,with leaves representing classifications andnodes representing
tests of features that lead to those classifications. The accuracy of
decision trees has been shown to be better or comparable to other
models including artificial neural networks, statistical, and genetic
models. The prediction in the classification process commences at the
root, and a path to a leaf is followed by using the decision rules
governed at each internal node. The characteristic class label to the
leaf is then assigned to the incoming tuple.

DTC continues to function at high accuracy even in analysis of
large data sets. Current technology advancements in data extraction
and storage permit large amount of historic data to be preserved and
utilized for data analysis and creation of more realistic classification
rules. The property of DTC to function at high accuracy even when
handling in large data sets makes it an appealing tool.

Decision trees have since been implemented in software pro-
grams. Although the software implementation of DTC is highly
accurate the execution times and the resource utilization still require
improvement to meet the computational demands in the ever grow-
ing industry. Whereas hardware implementation of Decision trees
has not been investigated or reported indetail.Only a few researchers
[10]-[12] proposed hardware realization of various decision trees
using different architectures for specific problems.

This paper focuses on the speedup of the classification step using
hardware acceleration. We propose a pipelined architecture for the
hardware implementation of axis-parallel binary decision tree clas-
sification that meets the current demands of increased throughput
with minimal resource utilization. The proposed design supports a
streaming architecture by using double-buffered input and output
memories to simultaneously receive and process data. Our experi-
ments prove that our proposed hardware acceleration of classifica-
tion algorithms increases throughput by reducing the number of
clock cycles required to process the data and generate results. The
architecture also requires minimal resources and is therefore area
efficient. For scalability this proposed architecture, when configured
with a high speed communication unit, enables processing and data
transfer simultaneously. As long as the performance of the decision
tree classification enginemeets or exceeds that of the communication
unit, processing time is not affected by the transfer of data.

We developed the decision tree classification algorithm in detail
and explored techniques for adapting it to a hardware implementa-
tion successfully.

2 BACKGROUND

A number of hardware implementations of decision tree examples
are reported in the literature [10], [11]. The approach of using single

• The authors are with the Electrical and Computer Engineering (ECE)
Department, University of New Mexico, Albuquerque, NM 87131.
E-mail: fareenasaqib1@gmail.com; {aindrik, jimp, pgortiz, pattichis}@
unm.edu.

Manuscript received 17 Oct. 2012; revised 22 Sep. 2013; accepted 07 Oct. 2013.
Date of publication 17 Oct. 2013; date of current version 12 Dec. 2014.
Recommended for acceptance by R. Gupta.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.204

280 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



level classification technique instead of staged or multi-level tech-
nique limits the throughput because of having a restraint in the
design that new instance cannot be applied to the input before
completion of the classification of the previous data instance, result-
ing in low throughput. On the other hand the staged/leveled tech-
nique allows a new instruction/data fetch every clock cycle and thus
optimizes the throughput.

A more advanced approach, proposed by [10] is based on the
equivalence between decision trees and threshold networks hence
resulting in fast throughput since the signals have to propagate
through two levels only, irrespective of the depth of the original
decision tree.Most of the architectures for hardware implementation
of decision trees mentioned in the literature require a considerable
number of hardware resources [12].

Past research work has been reported on hardware implementa-
tions of data mining algorithms. Baker and Prasanna [13] used
FPGAs to implement and accelerate the Apriori [14] algorithm, a
popular association rule mining technique. They developed scalable
systolic array architecture to efficiently carry out the set operations,
and used a “systolic injection” method for efficiently reporting
unpredicted results to a controller. In [15], the same authors used
a bitmapped CAM architecture implementation on an FPGA plat-
form to achieve significant speedups over software implementations
of the Apriori algorithm. Several software implementations of
DTC have been proposed [16], [17], which used complex
data structures for efficient implementation of the splitting and
redistribution process. These implementations focused on paralleliz-
ing DTC using coarse-grain parallelization paradigms.

Li andBermak [18] suggested adecision tree classifier based on an
axis-parallel decision tree. Bachir et al. [19] presented both a hard-
ware-dedicated decision tree technique for the generation of expo-
nential variates and a derived architecture implemented in FPGA.

Podgorelec andKokol [20] proposed a self-adapting evolutionary
algorithm for the induction of decision trees and described the
principle of decisionmaking based onmultiple evolutionary induced
decision trees-decision forest. Chrysos et al. [21] presented data
mining on the web for classifying and mining huge amounts of e-
data by an implementation of data mining algorithm on a modern
FPGA to accelerate certain very CPU intensive data-mining/data
classification schemes. Subsequently they exploitedparallelismat the
decision variable level and evaluated its implementation on a mod-
ern high- performance reconfigurable platform [22].

The objective of this paper was to find an architecture that could
ensure high throughput with significant reduction in hardware
complexity. Generally, with an increase in the data sizes, the running
time stretches to several hours. In the architecture designed for this
research, each data record is assigned to a class using the predefined
classification rules. The developed solution yielded high accuracy
while handling large datasets. The hardware implementation
for this study helped enhance the performance over software
implementations.

3 DECISION TREE CLASSIFICATION ARCHITECTURE

In this paper we propose an efficient pipeline based implementation
of a decision tree classification algorithm. The hardware accelerator
for decision tree classification performs parallel operations using
concurrent engines, where each engine implements pipeline tech-
nique and thus fetches data records in every cycle, enhancing the
performance of classification process.

In our solution we proposed and adopted a two phased decision
tree classification process. Firstly in the induction Phase a training
dataset is used in order to determine the rules, based on which the
classification is to be done, at each node. We have opted to provide
these induced decision rules from the Microblaze softcore micropro-
cessor to the decision tree classification engine. In the next phase, the

classification is performed at the hardware level. The induction
process will be investigated in future work. Our proposed architec-
ture employs a pipelined data path, where the data is distributed in a
pipeline to execute concurrently, which is of significant importance
for large datasets to reduce the clock cycles.

The decision tree classification engine architecture concentrates
on axis-parallel binary trees, where each node in the tree can have no
more than two child nodes and only one of the attributes comprising
the dataset is compared against a constant at each node. These
constants are determined in the induction phase for each node. Fig. 1
shows an example of binary decision tree, for a given dataset, where
the leaf nodes represent the classes that divide the data into different
categories, and each internal node represents the test conditions,
from which it traverses and reaches one of the classifications.

The decision tree classification subsystem implements each level
of tree using a stage as represented in Fig. 2. Each stage consists of a
decision logic, coefficient memory and internal registers. The input
address to the coefficient memory is a function of the path through
the decision tree thatwas taken to arrive at that particular node. Each
coefficient memory stores coefficient values, attribute index of the
incoming data fromwhich to compare the coefficient, operation to be
performed and a pointer to either the memory location of the next
stage or the class assigned. The output of the coefficient memory
contains all the information needed to perform the operation associ-
ated with the node in the tree being addressed.

The decision tree classification engine has threemajor parts: a) the
double-buffered input block RAM b) the decision tree classification
subsystem, and c) the double-buffered output block RAM. The
decision logic reads the incoming data and takes the rules from its
associated coefficientmemory, processes themand forwards the data
to the next stage with the processed results. The intermediate results
decide whether a category is assigned to the data or further

Fig. 1. Decision rules in form of decision tree.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015 281



processing is required in thenext stage. In casewhen the classification
is complete for adata, thedata is forwarded to the next stageswithout
further processing, otherwise the processing and comparison is
repeated until it is assigned to a class and then stored in the output
memory. All these operations are performed in a pipelined manner
where in every clock cycle the data is forwarded into next stage and
newer data is fetched.

Fig. 3 represents a decision tree with depth of , having stages
from which the data passes through, and then the classification is
stored in the output blockmemory. The unclassified data is provided
by the double-buffered input block RAM to the first stage of the
engine, from where it is processed and propagated down the pipe-
line. The classifications for each tuple, are stored in the double-
buffered output block RAM. The Xilinx Logicore IP Block Memory
Generator has been used in order to implement the input and output
memories. Where, block memory generator uses embedded block
memory primitives in Xilinx FPGAs to implement memories of
different depths and widths. Our proposed design implemented on
Digilent Nexys2 Spartan 3 E board uses two fully independent ports
each with its own read and write interfaces and access to a shared
memory space. These ports can operate at different clock frequencies
thus making it possible for the classification subsystem to operate at
double the frequency of the on-board system clock.

Fig. 4 shows the RTL level block diagram of one such hardware
module/stage of the classification subsystem. In eachmodule there is
a memory element, namely coefficient memory associated with it.
These memory elements are also generated using the Xilinx Logicore

DistributedMemoryGenerator IP.During thememory configuration
stage the bit is set high. This allows the Microblaze to
access the coefficient memory, in order to write the rules for each
node associated to that level.

The control unit ties the address lines of the coefficient memory to
the address value received from theprevious hardwaremodule in the
pipeline. The size of the coefficient memory depends on which level
of the tree it is associated. Hence the size varies from one 64 bit wide
line to 2 n 64 bit wide lines where n is the number of levels in the
decision tree.

The attributes are transferred to the module from the double-
buffered input block RAM or the previous stage in the pipeline.
Depending on the Attribute Index the attribute to be compared is
selected and transferred to the comparators. The constant that it is to
be compared against is fetched from the coefficient memory based on
the address received from the previous stage. The new address for the
coefficientmemoryof thenext stage signifying thepath tobe taken (left
child or right child) while traversing the decision tree is sent to the
next stage in the pipeline based on the operation select lines and the
comparator outputs.

The decision tree classification has been implemented as a
Hardware-Software Co-Design. The Xilinx soft-core microprocessor
Microblaze has been used to supply and fetch data to and from the
reconfigurable decision tree classification engine. The data coming in
is read by the Microblaze which sits on the Peripheral Local Bus
(PLB). Microblaze in turn transfers the data to the double-buffered
input blockRAMof the decision tree classification engine. The engine
is a custom peripheral designed as a slave module of the PLB. Once
the double-buffered input RAM is written to with a given batch of
data the Microblaze activates the classification engine by asserting a
signal. The classified data is written into the double-buffered output
block RAM.

In order to increase the efficiency of the engine it has been made
parallel. Fig. 5 shows the overall pipelined and parallel architecture
where the decision tree subsystem is instantiated eight times thus
facilitating computation of eight classification result every clock
cycle. After the initial latency, equivalent to the number of levels in
the tree, 8 tuples of the dataset are categorized every clock cycle. Our
tested design of the proposed architecture allows a depth of up to 13
levels, therefore the maximum latency for this design is 13. The
address management for writing to the double-buffered input block
RAM and reading from the double-buffered output block RAM has
beendone in such away that eight consecutive tuples can be read and
classified in every clock cycle. The double-buffered input and output
RAMs are designed to allow for simultaneous buffering and proces-
sing. The operations of each RAM are switched after the given batch
of data records are processed by the classification subsystem.

In theoretical analysis we analyzed following characteristics and
limitations of the hardware architectures designed previously.

i. Only single data record is fetched in every cycle, thus
requiring more clock cycles.

Fig. 2. Decision tree stages.

Fig. 3. Decision tree classification subsystem.

Fig. 4. RTL level block diagram of hardware module.

282 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015



ii. Data record is fetched in sequential order from single input
memory.

iii. The engine performs the classification and stores in output
memory and only then fetches the new data record. Thus
wasting the processing cycles.

Following are the enhancements in our proposed architecture
whereweutilize the hardware pipelines andparallelism to overcome
the above mentioned limitations:

i. Engine is made of pipelined stages, each stage implements
rules of one level of the tree.

ii. Pipeline to make use of processing cycles when data is
written in memory, thus to increase the performance.

iii. Engine works on clock frequency double to that of the
interface clock.

iv. Multiple data records are read as well as written simulta-
neously in every cycle, exhibiting parallelism, thus reduc-
ing the overall clock cycles.

v. Distributed memories are used for the coefficient lookup
tables inside the peripheral for making the engine memory
efficient, and to reduce the clock cycles to access the data.

vi. The block RAMs are placed in the peripheral such that the
bus is not used in the memory accesses, thus reducing the
clock cycles required for setting-up bus protocol.

vii. Also, the on-chip block memories are used for the pre-
processed datasets, the classification rules and storing the
classification results.

Consequently, we are able to optimize the access to memories in
one clock cycle, in the given architecture. This results in overall
reduction of clock cycles and hence a greater impact on the
performance.

The development board used for this work is the Dili-
gent Nexys-2 Spartan-3 E FPGA Board featuring a single Xilinx
XC3S1200 E-FG320 FPGA. This particular component does not
support PCI Express and without access to a high-performance
interface, the proof-of- concept design discussed in this paper is
implemented using RS232 to move data back and forth from the
host to the FPGA. As the bandwidth of an RS232 link is inappro-
priate for an application requiring high performance, the I/O
transfer time in the performance results as their inclusion would
have completely hidden the performance increases realized by our
parallel architecture.

The theoretical performance of the Gen-2 PCIe hard core in the
Virtex-6 FPGA is 500 MB/s/lane, giving an x8 design a raw band-
width of 4 GB/s in each direction. Assuming to achieve 80% efficien-
cy due to bursting andDMA, thiswould be equivalent to transferring
3.2 GB/s, or 800 Mwords/s in each direction. Our design, for 4
attributes processes eight 32-bit samples in parallel at 100 MHz, the
raw bandwidth of our logic is also 800 Mwords/s. Therefore, if we
replace the RS232 interface with a PCIe interface, the I/O bandwidth
would, at a first- order estimate, match that of our parallel imple-
mentation. For this reason, it is reasonable at this stage to include only
the performance results for the parallel implementation and ignore
the transfer time represented by our legacy RS232 interface, as a
modern interface such as PCI Express would be able to keep up with
our design’s classification rate. The FPGA Implementation and ex-
perimental results are discussed in the next section.

4 EXPERIMENTAL RESULTS

We have implemented the proposed architecture on Digilent
Nexys2 Spartan 3 E FPGA board to perform classification in hard-
ware accelerator. Variety of datasets, varying from benchmark to
synthetic datasets have been used. TheNumber of tuples also varies
to verify and validate the performance dependencies of the
engine. Data pre-processing includes data cleansing, that is to
normalize the data and conversion into hex-decimal number, to
feed in the engine.

An open source tool WEKA [23], which is an open source tool
under the GNU GPL license, was used for induction to establish the
rules. For the induction, classification algorithm J48was exploited for
all the datasets used in the experiments conducted for the imple-
mentation. The rules were extracted from the binary decision tree
generated through the induction. Further, the rules were formulated
and provided to the micro-blaze for the classification process.

The Xilinx Platform Studio was used to program the micro-blaze;
and to program hardware we used Xilinx ISE 12.4. Micro-blaze was
provided with the rules of the classification; where with different
datasets we have different classifications rules. With each test per-
formed the data is fed into the memory. The speed of the clock is
50 MHz, whereas our proposed hardware accelerator operates on
double clock frequency that is 100 MHz.

4.1 Accuracy of the Model
The accuracy of our parallel implementation of the pipelined archi-
tecture is shown in Table 1. Here Iris and Contact lenses from UCI
machine learning repository [24] are the benchmark datasets, where-
as synthetic datasets 1, 2 and 3, generated using Datagen [25]. A
number of attributes varying from 4 to 6, are used with each config-
uration, having the number of tuples ranging from 100 to 1000. The
results validate that our architecture supports varying number of
attributes and tuples without deteriorating the accuracy of the
model.

Fig. 5. Parallel and pipelined decision tree engine.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015 283



4.2 Comparison with Software Implementations
For the comparisonwith the software, execution times of the decision
tree classification engine is compared with WEKA data mining
software, R-project and C implementation of classification process.
In R-project the tree is implemented by recursive partitioning using
Rpart routines and classification is performed using predict routine.
The WEKA tool uses the ID3 for induction process, and performs
classification on the test data. The same datasets were used for all the
software and hardware implementations.

Detailed results of the study are shown in Table 2, presenting the
time each implementation takes as well as the overall speedup/per-
formance gains of hardware accelerator compared to software. The
results showthat thespeedofC implementation is inmicrosecondsand
it takes less time thanWEKA and R-project. WEKA, a java based tool,
shows better performance than R-project. R-project is an interpreted
languagewhich is implemented inC,but inordersofmagnitudeslower
than specialized C implementation of the classification.

We also tested our proposed system on datasets with 4, 5 and 6
attributes byvarying thenumberof tuples from100 to 8000 and itwas
established that there is no impact of the number of attributes on the
performance of the engine. This occurred mainly due to the fact that

we have implemented an axis-parallel decision tree, the hardware
takes the same number of cycles for classification regardless of the
number of attributes of the dataset.

Our design is currently limited by the locally available memory
and no high speed communication link to streamdata, themaximum
number of dataset tested is 8000 data records. If streaming data is
available decision tree classification engine is designed to process at
a fixed throughput that is linearly related to data set size. Theoreti-
cally the number of

for switching the buffered memory. For example for the
dataset of 1 million records it will take 2.5 milliseconds.

4.3 Comparison with Previous Hardware Implementations
For the comparison with the previous hardware implementations,
the clock cycles required by the FPGA implementation of decision
tree classification engine are compared with the SMpL and SmpL-p
implementation proposed by Struharik et al. [12]. The SMpL-p
architecture employs one hardware module per level of the decision
tree. In the experiments performed by Struharik et al. for the classifi-
cation, 16 of the 23 datasets, used are binary trees. We have per-
formed the experiments on the subset of the datasets used in the
SmpL and SmpL-P, and compared the performance in terms of the
clock cycles in Table 3 and it shows that decision tree classification
engine has on average 3.5x speedup over these implementations.

4.4 Resource Utilization
Based on the RTL level hardware requirements SmpL and SmpL-P
requires M.n multipliers, whereas our implementation requires 0
multipliers. Also the number of adders for our implementation is

adders, whereas the SMpL requires approximately M. [2 n]
adders, where is the number of attributes and is the level of the
trees. Hence the hardware requirements are also minimal for our
proposed hardware engine.

Thedevised architecture area utilization, in terms of lookup tables
andflipflops and the blockRAMutilization is also optimized. Table 4
shows the utilization summary at different hierarchies of the design.

TABLE 1
The Accuracy of the Decision Tree Model

TABLE 2
Comparison with Software Implementations

TABLE 3
Comparison with Hardware Implementations

TABLE 4
The Resource Utilization of the Decision Tree Model

284 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015



The utilization of number of slices of the decision tree classifica-
tion enginewith 8 parallel classification subsystems instances is 29%,
whereas each instance of 4 stage pipelined decision tree module uses
205 slices bringing it to 2% total utilization. Thewhole designnumber
of slices utilization is 5386 which is 62% utilization. Thus the pro-
posed architecture in comparison with SMpL-p has reduced hard-
ware complexity of the modules and reduced execution time.

4.5 DataStreamingwithHighPerformanceCommunication
Link

Our ideal architecturewould consist of a streaming interface between
PCIe and the decision tree classification engine. Using this interface,
the host computer could set up DMA transfers to a fixed destination
address on the DT peripheral and continually stream data to the
limits of the communication link.At theDTperipheral, onboard logic
wouldmanage the streaming data such that a double-buffered input
memory could be used to maintain constant bandwidth between the
host and peripheral. In this way, the decision tree classification
engine would hide the addressing complexity from the host. As long
as the processing capability of the engine met or exceeded that of the
communication link, saturation would not occur.

This architecture allows classification of big data in a streaming
manner. Fig. 6 shows the streaming architecture, the double-buffered
input and output RAMs are designed to support simultaneous
buffering and processing of data. A memory controller switches the
first memory from buffering mode to processing mode once the
memory is filled, and connects the other memory to the communica-
tion unit for buffering. In such a manner the communication over-
head is hidden.

6 CONCLUSION

The proposed architecture has the advantage of being highly scalable
and exhibits high levels of parallelism. The performance of pipelined
architecture is linearly dependant on the number of data records/
tuples and independent of the number of attributes in a particular
dataset. Higher levels of parallelism can be achieved by increasing
the number of parallel pipelines, also trees of greater depth up to 13
can be modeled by increasing the number of pipeline stages.

The design has the minimum resource utilization thus the power
consumed is also an advantage of the binary decision tree classifica-
tion accelerator engine. Contrary to the previous implementations,
we focused on the pipelining of different stages; efficient use of the
on- chip memories; and registers to optimize the area used and
minimize the clock cycles, thus helping in accelerating the process
of classification.

The next phase of this work will focus on obtaining a more
modern evaluation platform, implementing a PCIe-based streaming

interface to our logic, and characterizing the results. Also making
the design concurrent by using multiple FPGA boards connected
together using Aurora protocol.

REFERENCES

[1] R. Narayanan, D. Honbo, J. Zambreno, G. Memik, and A. Choudhary, “An
FPGA Implementation of Decision Tree Classification,” Proc. IEEE Int’l Conf.
Design, Automation and Test in Europe, Apr. 2007, pp. 189-194.

[2] C. Bishop, Neural Networks for Pattern Recognition. Oxford Univ. Press, 1995.
[3] L. Rokach and O. Maimon, “Top-Down Induction of Decision Trees—A

Survey,” IEEE Trans. Systems, Man, and Cybernetics, vol. 35, no. 4, pp. 476-
487, Nov. 2005.

[4] V. Vapnik, Statistical Learning Theory. Wiley, 1998.
[5] D.C. Hendry, A.A. Duncan, and N. Lightowler, “IP Core Implementation of a

Self-Organizing Neural Network,” IEEE Trans. Neural Networks, vol. 14, no. 5,
pp. 1085-1096, Sept. 2003.

[6] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward Neural
Network Implementation in FPGA Using Layer Multiplexing for Effective
Resource Utilization,” IEEE Trans. Neural Networks, vol. 18, no. 3, pp. 880-888,
May 2007.

[7] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi, “Feed-Forward Support
VectorMachineWithoutMultipliers”, IEEETrans.Neural Networks, vol. 17, no.
5, pp. 1328-1331, Sept. 2006.

[8] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, 2000.

[9] L. Breiman, J.H. Freidman, R.A. Olshen, and C.J. Stone, Classification and
Regression Trees. Wadsworth and Brooks, 1984.

[10] A. Bermak and D. Martinez, “A Compact 3D VLSI Classifier Using Bagging
Threshold Network Ensembles,” IEEE Trans. Neural Networks, vol. 14, no. 5,
pp. 1097-1109, Sept. 2003.

[11] S. Lopez-Estrada and R. Cumplido, “Decision Tree Based FPGA Architecture
for Texture Sea State Classification,” Proc. IEEE Int’l Conf. Reconfigurable
Computing and FPGA’s, ReConFig., pp. 1-7, Sept. 2006.

[12] J.R. Struharik, “Implementing Decision Trees in Hardware,” Proc. IEEE 9th
Int’l Symp. Intelligent Systems and Informatics (SISY), pp. 41-46, Sept. 8-10, 2011.

[13] Z. Baker and V. Prasanna, “Efficient Hardware Data Mining with the Apriori
Algorithm on FPGAs,”Proc. IEEE Symp. Field Programmable CustomComputing
Machines (FCCM), 2005, pp. 3-12.

[14] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo, “Fast
Discovery of Association Rules,” Proc. Advances in Knowledge Discovery and
Data Mining, pp. 307-328, 1996.

[15] Z. Baker and V. Prasanna, “An Architecture for Efficient Hardware Data
Mining Using Reconfigurable Computing Systems,” Proc. IEEE Symp. Field
Programmable Custom Computing Machines (FCCM), 2006, pp. 67-75.

[16] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A Scalable Parallel Classi-
fier for Data Mining,” Proc. Int’l Conf. Very Large Databases (VLDB), 1996,
pp. 544-555.

[17] M. Joshi, G. Karypis, and V. Kumar, “ScalParC: A New Scalable and Efficient
Parallel Classification Algorithm for Mining Large Datasets,” Proc. 11th Int’l
Parallel Processing Symposium (IPPS), 1998, pp. 573-579.

[18] Q. Li and A. Berma, “A Low-Power Hardware-Friendly Binary Decision Tree
Classifier for Gas Identification,” J. Low Power Electron. Appl., vol. 1, pp. 45-58,
2011.

[19] T.O. Bachir, M. Sawan, and J.J. Brault, “A New Hardware Architecture for
Sampling the Exponential Distribution,” Proc. IEEE Canadian Conf. Electrical
and Computer Eng., pp 1393-1396, 2008.

[20] V. Podgorelec and P. Kokol, “Evolutionary Induced Decision Trees for
Dangerous Software Modules Prediction,” Information Processing Letters, vol.
82, pp. 31-38, Feb. 2002.

[21] G. Chrysos, P. Dagritzikos, I. Papaefstathiou, and A. Dollas, “Novel and
Highly Efficient Reconfigurable Implementation ofDataMiningClassification
Tree,” Proc. 21st Int’l Conf. Field Programmable Logic and Applications, pp. 411-
416, 2011.

[22] G. Chrysos, P. Dagritzikos, I. Papaefstathiou, and A. Dollas, “HC-CART: A
Parallel System Implementation of DataMining Classification and Regression
Tree (CART) Algorithm on a Multi-FPGA System,” ACM Trans. Architecture
and Code Optimization, vol. 9, no. 4, p. 25, Jan. 2013, article 47.

[23] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten,
“The WEKA Data Mining Software: An Update,” SIGKDD Explorations,
vol. 11, no. 1, pp. 10-18, 2009.

[24] A. Frank and A. Asuncion, UCI Machine Learning Repository, School of
Information and Computer Science, Univ. of California, http://archive.ics.
uci.edu/ml, 2010.

[25] G. Melli, The Datgen Dataset Generator, version 3.1, http://www.datasetgen-
erator.com, 1999.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Fig. 6. Streaming architecture.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015 285


