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Dynamically reconfigurable computing platforms provide promising methods for dynamic management of hardware resources,
power, and performance. Yet, progress in dynamically reconfigurable computing is fundamentally limited by the reconfiguration
time overhead. Prior research in the development of dynamic partial reconfiguration (DPR) controllers has been limited by its use
of the Processor Local Bus (PLB). As a result, the bus was unavailable during DPR. This resulted in significant time overhead.
To minimize the overhead, we introduce the use of a multiport memory controller (MPMC) that frees the PLB during the
reconfiguration process. The processor is thus allowed to switch to other tasks during the reconfiguration operation. This effectively
limits the reconfiguration overhead. An interrupt is used to inform the processor when the operation is complete. Therefore, the
system can multitask during the reconfiguration operation. Furthermore, to maximize performance, we introduce the use of
overclocking with active feedback. During overclocking, the use of active feedback is used to ensure that the device voltage and
temperature are within nominal operating conditions. All of these contributions lead to significant performance improvements
over current partial reconfiguration subsystems. The portability of the system, demonstrated on the Virtex-4 and the Virtex-5,
consists of four different hardware platforms.

1. Introduction

As the speed and size of FPGA reconfigurable fabric has
grown, the ability to perform multiple complex parallel
applications, using a single device, has become a reality. For
example, as early as 2003, the BMW Williams F1 team was
running its fifth generation vehicle control and monitoring
(VCM) unit with a Texas Instruments DSP and a Xilinx Vir-
tex family of FPGA devices to control mission critical opera-
tions [1]. Today, FPGAs have increased product features and
decreased product time to market and given system designers
abilities that were only possible with the use of custom ASICs.

Dynamic partial reconfiguration allows the FPGA pro-
grammable fabric to change its mode of operation during
run time. Effectively, dynamic partial reconfiguration (DPR)
allows for time-division multiplexing portions of the FPGA
fabric, while the system is operating. Future systems are likely

to benefit from the development of effective systems that use
DPR to provide for dynamic performance and power control.

Currently, when considering partial reconfiguration, the
largest bottleneck is the time it takes to switch hardware
resources. When a device is partially reconfiguring an area
of the fabric, the fabric resources in the area are not
available to the system. Therefore, increasing the speed at
which the device is reconfigured increases the percentage
of time of availability of the reconfigurable resource. As a
result, we can explore applications that require high dynamic
reconfiguration rates. An application of DPR in a dynamic
arithmetic architecture has been recently reported in [2]. A
recent application in DSP can be found in [3].

In what follows, we will focus our attention on DPR on
Xilinx FPGA devices. More recently, DPR has also been made
available on Altera FPGAs. While we will not discuss DPR
on Altera FPGAs, we believe that the basic ideas introduced
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Figure 1: High-speed dynamic partial reconfiguration controller platforms.

here should be applicable to the future generations of FPGAs.
Nevertheless, as with most high-performance hardware
applications, we recognize that substantial effort may be
needed to reimplement these ideas in future FPGAs.

To achieve DPR on Xilinx devices, the goal is to provide a
high-speed interface that transfers the DPR bitstreams into
the Internal Configuration Port (ICAP). Here, the ICAP
port is used to transfer the bitstreams into the FPGA fabric.
The most direct approach for implementing this interface
is through the use of the Processor Local Bus (PLB) that
provides an interface between the ICAP, the local processor,
and several other peripherals in the Virtex-4 and Virtex-
5 devices. Examples of high-performance implementations
that make use of the PLB bus can be found in [4, 5].
Alternatively, in [6], the authors report on the use of the PLB
bus for downloading partial bitstreams through Ethernet.
On the other hand, Shelburne et al. [7] implemented a
custom MetaWire interface to emulate a Network-on-Chip
(NoC) approach that does not make use of the PLB bus. The
approach makes use of expensive BRAM resources and over-
clocking (144 MHz versus the Xilinx recommended 100 MHz
clock) without monitoring proper FPGA operation. As a
result, over-clocking may cause the system to lock up
unexpectedly or cause other erratic behaviors. Liu et al.
[8] also provided a BRAM-based approach. As in [7], this
approach is limited by the size of the BRAM.

Unfortunately, the use of the PLB bus during the reconfi-
guration process will also prohibit its use by the processor
or other peripherals. Thus, it is preferable to develop a DPR
interface that avoids the use of the PLB bus. This allows the
processor to perform other work while working with other
peripherals.

We propose a new high-speed dynamic partial reconfig-
uration system that does not use the PLB bus during the
DPR bitstream download to the FPGA fabric. Instead, we use
interrupts to initiate the DPR process and also to inform the
processor when the DPR bitstreams have been downloaded
to the FPGA fabric. This is accomplished through the
use of a multiport memory controller (MPMC) memory
controller. Furthermore, for maximizing performance, we
also introduce over-clocking with active feedback to ensure
that the device voltages and temperatures are within nominal
values. To avoid the limitations of BRAM memory, the

proposed approach is based on DDR memory. Our approach
leads to a bandwidth of 3.4 Gb/s for both reads and writes to
the ICAP port.

For testing the system, we study an application of DPR
in cryptography. The need for DPR in cryptography comes
from applications that require an effective hardware archi-
tecture that can provide secure communications at different
classification levels or from the need to accommodate several
users simultaneously. Here, the basic idea is that each
classification level (or user) will be effectively implemented
in hardware by downloading its unique DPR bitstream to
the FPGA. Then, the DPR system will be required to adapt
the FPGA fabric to the dynamically varying requirements in
classification levels and the number of users. Naturally, appli-
cations in dynamic arithmetic (e.g., [2]) or in Digital Signal
Processing are also possible (e.g., [3]). On the other hand,
the cryptography application considered here also allows us
to validate our DPR system at the single bit level for the stan-
dard set of bit test vectors provided by the National Institutes
of Standards and Technology (NIST) (see [9] for details).

The remaining of this paper is organized as follows.
In Section 2, we provide basic background information on
available FPGA platforms, their components, and their use
in the proposed high-speed dynamic partial reconfiguration
controller (HSDPRC) soft IP core. We the present related
work in Section 3. In Section 4, we describe the design and
development of the proposed high-speed dynamic partial
reconfiguration controller (HSDPRC) soft IP core. Results
are given in Section 5. Concluding remarks are given in
Section 6.

2. Background

In this section, we provide basic background information
on the partial reconfiguration controller facilities available
on the Virtex-4 (ML410 board) and the Virtex-5 (ML507
board). Figure 1 gives a block diagram summarizing the
four test systems that will be considered. For techniques
associated with testing the systems considered here, we refer
to [10–12].

2.1. FPGA Evaluation Boards. The evaluation boards are
based on the Virtex-4 and Virtex-5. Virtex-4 includes
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a PowerPC PPC405 microprocessor. Virtex-5 includes a
PowerPC PPC440 microprocessor, a hard IP crossbar mem-
ory controller, and System Monitor. Both can implement
the uBlaze soft IP processor and soft IP crossbar memory
controller. In what follows, we provide more details on the
architecture.

2.2. Hardware Architecture. The four processor subsystems
consist of common IP used across the platforms and specific
IP used in order to optimize the processor subsystem for
the application. The following will outline the common
architecture components and the differences.

2.2.1. Common Architecture Components. External to the
processor, each of the four processor subsystems consist of
several common soft IP blocks. These blocks are the universal
asynchronous receiver/transmitter (UART), Block Memory
(BRAM), interrupt controller, Processor Local Bus (PLB),
external flash, and DDR memory. Figure 3 shows how the
blocks connect via the Processor Local Bus (PLB). For the
proposed system, we also add the HSDPRC core and an
interrupt controller.

2.2.2. Processor Local Bus (PLB). The PLB for Virtex-4 is 64-
bits wide and 128-bits wide on Virtex-5 devices. The PLB
provides a bus infrastructure for connecting an optional
number of PLB masters and slaves components. It consists of
a bus control unit, a watchdog timer, and separate address,

write, and read data path units. In addition, the PLB bus has
an optional Device Control Register (DCR) slave interface
that provides access to its bus error status registers.

2.2.3. Block RAM (BRAM). The BRAM is distributed
throughout the FPGA fabric. It is thus considered to be a
relatively expensive resource to use.

The proposed IDPR system uses BRAM to store the
reset vector for the processor or as a memory to run the
user application. The reset vector is the default location the
processor will go to find the first instruction to execute after
a reset (or startup). For all of the systems but the V5-PPC-
266 MHz system, the BRAM stores the reset vector. For these
systems after startup, the reset vector directs the processor
to the user application stored in external DDR memory. For
the V5-PPC-266 MHz system, to obtain optimal processor
performance, the entire user application runs out of the
system BRAM.

2.2.4. DDR. The DDR memory on the ML410 and ML507
boards are different. The ML410 board uses a slower
200 MHz capable DDR2 memory, while the ML507 uses a
266 MHz capable DDR2 memory. The LocalLink to memory
interface ratio determines the speed of the memory interface.
For both Soft IP Direct Memory Access (SDMA) and Hard IP
Direct Memory Access (HDMA), the clock is a 1 to 1 or a 2
to 1 ratio of the memory clock. For all of the systems, the
external memory is set to the maximum speed the memory
could operate and not violate the ratio.

The DDR2 memory on both the ML410 and ML507
are standard DDR2 DIMM module with a 64-bit data bus.
The ML410 PPC system DDR2 interface is configured to
operate at a 100 MHz using a 1 to 1 LocalLink Clock ratio.
This provides a 100 MHz clock to the LocalLink SDMA
interface and HSDPRC core. For the ML507 MicroBlaze
system, the DDR2 interface operates at 200 MHz, with a
SDMA LocalLink to the HSDPRC core. The ML507 PowerPC
system is configured with two different clocking schemes:
(i) a 200 MHz DDR2 clock providing a 100 MHz LocalLink
HDMA clock and (ii) a 266 MHz DDR2 clock providing a
133 MHz LocalLink HDMA clock.
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2.2.5. FLASH. The flash is the static storage medium in the
system, and stores the partial bitstreams when the system
is not powered. During initialization, the system copies the
partial reconfiguration bitstreams from the flash via the PLB
into DDR memory. Compared to the DDR memory, the flash
interface is significantly slower in both speed and access time.
The flash is untested for the IDPR system.

2.2.6. UART. The UART in the IDPR system connects the
host computer to the Processor Subsystem. The UART in
the system controls the bit streams that are loaded in the
partial reconfiguration regions, and to access configuration
statistics. The UART is unneeded for systems that have other
provisions for controlling the embedded processor.

2.2.7. Performance DMA Core. The Performance DMA core
is used by the IDPRC to measure the throughput of a single
HDMA using the PowerPC 440 crossbar or SDMA using
the MPMC block for both the Rx and Tx channels on the
LocalLink interface. The core is a slave PLB v4.6 interface
with read/write registers used to set up and store the DMA
performance calculations. The Performance DMA core is
only needed by the IDPRC for testing, a fielded system would
not need this core as it is only used to measure and document
the speed of reconfiguration. To integrate the core into a
design, several signals are connected in the system. These
include: LL CLK, TX SOF, TX EOF, RX SOF, and RX EOF.
The embedded processor driver for this core has several
functions.

(i) Setup PERF DMA sets the control register to trigger
on a transaction.

(ii) Poll Done PERF DMA is used to poll the status
register until the DMA transaction is complete.

(iii) Tx Transfer reports the results of the Tx transaction
in Mbps.

(iv) Poll Done PERF DMA reports the results of the Tx
transaction in Mbps.

2.2.8. The Virtex-5 and PowerPC Platform. The Virtex-5
PowerPC 440 system utilizing the 266 MHz external DDR2
is quite different from the other systems. This system uses
feedback from the System Monitor IP to determine if
the device voltage and temperature parameters are within
nominal operating conditions. The reason this is needed
is because the device specification for the Virtex-5 ICAP
port is only tested at 100 MHz, through Process, Voltage,
and Temperature (PVT). On the other hand, most IC
manufactures build in a tolerance when specifying the
operating parameters. Taking this into account the ICAP port
for this system is overclocked 33%, when the device is in
nominal operating conditions.

The overclocking technique can be used in fielded
systems. However, the clocking for the system would need
to be controlled with a BUFGMUX primitive [11]. This
primitive allows for glitchless clock switching.

2.3. Interrupt Controller. The systems interrupt controller
interrupts the processor when a predefined programmable

interrupt condition has occurred. For this application, the
interrupt controller interrupts the processor after the LocalL-
ink DMA operation has completed and the status registers
have valid data.

The interrupt controller in the IDPR system indicates
when a partial reconfiguration process completed. This
allows the processor to do other tasks such as processing data
and/or servicing other interrupt conditions.

2.4. Active Feedback Controller. The System Monitor active
feedback circuit is shown in Figure 3. The circuit consists
of a Digital Clock Manager (DCM), BUFGMUX, ICAP
Controller, the FPGA Fabric, System Monitor, and the
PowerPC 440 (PPC440) processor. The DCM produces both
a 100 MHz and 133 MHz clock, from a 100 MHz reference.
The BUGGMUX is a Xilinx primitive that allows the clock
source driving the ICAP controller to switch without glitches,
between the two DCM clocks. Before a reconfiguration
operation, the FPGA System Monitor measures the voltage
and temperature parameters of the FPGA and feed them
back to the PPC440 processor. The PPC440 processor then,
based on a predefined set of constraints, determines the
clock frequency that the partial reconfiguration operation
will use. Once the clock frequency is determined, the PPC440
set the BUFGMUX accordingly, before starting the partial
reconfiguration operation.

3. Related Work

In this Section, we provide a summary of related research.
At the end of the section, we also provide a summary of the
proposed approach.

Claus et al. [4] present a dynamic partial reconfiguration
system to perform DMA through the PLB ICAP controller.
It is a modification of an earlier system discussed in [13]
so as to allow the controller to work on any Virtex-II or
Virtex-4 device. The ICAP controller acts as master to the
PLB bus, allowing 64-bit data transfers in burst mode. In
burst mode, the data bitstream is transferred in 16 64-bit
words (256 bytes). With respect to each other, the burst mode
transfers are not pipelined. The authors report maximum
achievable data rates of 295.4 MB/s (see Table 1). However,
the transfers are made through the PLB bus, thus not
allowing use by other peripherals.

Manet et al. [5] implement an OPB ICAP controller on
the Virtex-4 for using dynamic partial reconfiguration in
Signal and Image Processing applications. The DPR system
allows 32-bit write transfers at 100 MHz using the DMA.
The implementation reported a throughput of 350 MB/s at
a frequency of 100 MHz. Unfortunately, the implementation
based on the OPB prohibits the use of any other peripherals
during the reconfiguration writing process. Furthermore,
there is no facility for DMA readback from the reconfigu-
ration memory.

Shelburne et al. [7] implemented a custom MetaWire
interface to fast DPR to emulate a Network-on-Chip (NoC)
approach. This approach uses the FPGA BRAM to hold the
reconfiguration bitstreams. Thus, the processor buses are
avoided. This approach is interesting because it takes into
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Table 1: Existing Dynamic Partial Reconfiguration Approaches.

Study Device, bitstr. mem. Method Max ICAP speed

Claus et al.[4], 2008 Virtex-2P, DDR OPB 4.77 MB/s @100 MHz

Claus et al. [4], 2008 Virtex-2P, DDR PLB bus Custom ICAP DMA contr. 89.9 MB/s @100 MHz

Bomel at al.[6], 2009 Virtex-2P, DDR Ethernet 50 MB/s @100 MHz

Claus et al.[4], 2008 Virtex-4, DDR2 OPB 5.07 MB/s @100 MHz

Claus et al.[4], 2008 Virtex-4, DDR2 PLB bus Custom ICAP DMA contr. 295.4 MB/s @100 MHz

Manet et al.[5], 2008 Virtex-4, ZBT SRAM or DDR Custom ICAP DMA contr. 350 MB/s @100 MHz

shelburne et al. [7], 2010 Virtex-4, FPGA BRAM MetaWire (custom) 219.31 MB/s @100 MHz

Bomel et al.[6], 2009 Virtex-4, DDR Ethernet 50 MB/s @100 MHz

Liu et al.[8], 2010 Virtex-4, FPGA BRAM PLB IP for BRAM Tx (fastest) 371.4 MB/s (max) @100 MHz

consideration many of the aspects that need to be addressed
with data locality. Here, we use the term data locality to
refer to the fact that the DPR bitstream is stored to the
FPGA BRAM, which should be close to the FPGA fabric to
be reconfigured. In addition this paper addresses the ability
to overclock the ICAP port to 144 MHz, which is above the
Xilinx recommended speed of 100 MHz. Unfortunately, the
approach does not take into consideration the fundamental
premise behind manufactures specifications, and how they
relate to edge conditions the device will encounter when
employed in environments outside of a controlled laboratory
environment. As a result, overclocking may cause the system
to lock up unexpectedly or other erratic behavior.

Bomel at al. [6] present a specific and quite simple
protocol for partial reconfiguration over Ethernet. The moti-
vation here is to create a better balanced hardware/software
partitioning of hardware architectures. With no change at
the protocol level, they were able to double the sustained
speed over a standard 100 Mb/s (Mb = Megabits) Ethernet
local Network. This is a good systems approach to DPR
but lacks the ability to push the available bandwidth of
the ICAP port due to the inherent speed and latency
imposed by the Ethernet port resulted in a throughput
of only 50 MB/s (400 Kbit/ms). The use of the Ethernet
port introduces several issues associated with high network
traffic. For example, packets can arrive out of order or
may be dropped. The paper does not address these issues.
Furthermore, Ethernet transfers use the PLB bus, a PLB/OPB
bridge, and the PLB/OPB bridge to the ICAP. This approach
requires a heavy burden on the processor.

Liu et al. [8] survey a variety of different designs that
can achieve a range of runtime reconfiguration speeds. The
first set of designs is based on the use of a slave interface
for receiving control commands through the PLB bus and
a PLB Master Burst interface for DMA that avoids HWICAP
overhead. This first approach is similar to [4] in the use of
64-bit burst mode. The fastest approach in [8] is based on
the use of BRAM PLB interfaces and achieves the maximum
reconfiguration speed of 371.4 MB/s. Here, Block Memory
was used to store the partial bitstream that was scheduled
to be loaded into the fabric creating a virtual PR cashing
technique. The approach creates the need for a look-ahead
software decision point for the software algorithm to obtain

the maximum throughput. In addition, the system requires
a large amount of Block RAMs in the DPR controller to
store the prefetch partial reconfiguration bitstream prior
to loading the ICAP interface. In terms of resources, a
disadvantage of the method is that the approach requires very
expensive FPGA BRAM resources.

Related to our cryptographic application, we refer to
[14]. In [14], the authors motivate the use of cryptographic
algorithms for securing the DPR bitstreams. In a Virtex-5
implementation, the authors claimed a 1 Gbps throughput
for the cryptography module (AES-GCM module) and a
system throughput of about 800 Mbps. As in [8], high
performance was achieved by storing the DPR bitstreams on
Block RAMs on the FPGA.

The system described in this paper differs from all
prior approaches in that (i) it provides interrupt support
for communications between the DPR controller and the
processor and (ii) uses over-clocking with active feedback to
guarantee that the FPGA voltages and temperatures perform
within nominal values.

The use of interrupts provides an efficient systems view
of DPR. Interrupts are used for initiating DPR bitstream
downloads and also to inform the processor when the PR
process is complete. In the meantime, the processor will
have access to other peripherals and be allowed to perform
other tasks. As a result, the effective overhead of the DPR
process can be substantially reduced as compared to other
systems. Furthermore, this leads to an efficient application in
cryptography.

4. Methodology

The requirement for portability of the high-speed dynamic
partial reconfiguration controller (HSDPRC) led to its
development as a soft IP core that uses the LocalLink DMA
and Xilinx 32b-ICAP primitives. The core interface between
the hard DMA (HDMA) and the ICAP uses the Xilinx Virtex-
5 hard cross bar primitive. For the core interface between the
Soft DMA (SDMA) and the ICAP uses the Xilinx multiport
Memory Controller (MPMC) Soft IP core. To allow for ease
of use, the controller has a set of internal ICAP functions.
The functions allow the user to perform useful tasks such
as reading specific address in the FPGA and configuring
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internal read and write masks. The following section will
present the approach used to develop the HSDPRC.

4.1. HSDPRC Core Design. The development of the HSDPRC
soft IP core required an advanced two-part development flow
(see Figure 4). The advanced flow splits the development into
a traditional cycle accurate RTL simulation and a “hardware
in the loop” simulation. This approach is necessary since the
Xilinx ICAP simulation model does not provide a complete
behavioral model; in that, it does not allow writing or
reading of internal FPGA registers or configuration address.
Therefore, it was not possible without actual hardware test-
ing to see how the device ICAP will behave with a core. The
following sections outline the development flow.

The simulation model consisted of a complete ML410
partial reconfiguration subsystem, including the software
and driver used to implement the system. Using a complete
system simulation allowed for development and testing of
the behavioral VHDL model, as well as testing the HSDPRC
driver. Two ModelSim simulations were run, a DMA test to
verify the full function of the LocalLink DMA, and a Register
test to verify the processor access to the registers internal to
the HSDPRC core.

Figure 5 depicts the system model developed for the sim-
ulation. The system consists of an external DDR, PowerPC
405, MPMC, and HSDPRC model. The external DDR model
has a 64-bit wide data bus running at 200 MHz. The DDR
model and the MPMC crossbar core are connected. The
MPMC crossbar splits the bidirectional external memory
interface into 32-bit unidirectional data buses running at
100 MHz. Connected to the MPMC unidirectional data,
buses are the PowerPC 405 and the Transmit and Receive
FIFOs of the HSDPRC core. For the simulation, the Transmit
and Receive FIFOs of the HSDPRC core loop data from
the Receive FIFO to the Transmit FIFO. This configuration
allowed for complete system simulation of the DMA opera-
tion and the data path to and from the HSDPRC core and
external memory.

4.1.1. Hardware in the Loop Verification for the ICAP Interface.
The Synplicity Identify Hardware in the loop development
flow ensured the HSDPRC’s ICAP interface operates as
expected. The flow required a test fixtures used to simulate
the core and an Identify project used to read back the results
and display them for analysis. The Identify test procedure
ensures that both ICAP read and write functionality work as
expected. The hardware-in-the-loop simulation run at both
80 MHz and 133 MHz. The sequence of individual states is as
follows:

(1) write the Synchronization word,

(2) write one NOP command,

(3) write the RCFG command to the CMD register,

(4) write one NOP command,

(5) write the Starting Frame Address to the FAR 0,

(6) write the read FDRO register packet header,

(7) read the FDRO register count times (see formula
below),

(8) write one NOP instruction,

(9) write the DESYNCH command.

Here, we note that the NOP commands push the data
through the internal ICAP data pipeline. In addition, the
Frame Data Register (FDRO) is a read-only internal FPGA
register. The FRDO provided readback data for configuration
frames starting at the address specified in the Frame Address
Register (FAR). The read length of the FDRO is

FDRO Read Length = 41 · (Frames stored + 1) + 1, (1)

Here, the extra 1 in the formula above represents reads
and writes to an additional frame. This is to account for the
frame buffer. The 41 is the number of words in a frame.

4.1.2. Connecting the HSDPRC Soft IP Core. Once the EDK
cycle accurate RTL simulation and the Identify hardware-in-
the-loop work independently as expected, the two systems
were combined. This was accomplished by removing the
transmit and receive FIFO loopback, in the cycle accurate
RTL simulation. The ICAP wrapper, developed in the hard-
ware in the loop system, was then connected to the transmit
and receive FIFOs. After combining the two independent
systems, the final system (the HSDPRC) was targeted to the
test platforms.

4.1.3. Multimode Advanced Encryption Standard Partial Reco-
nfiguration Module. For verifying the performance of the
HSDPRC, we considered the Advanced Encryption Standard
(AES). This algorithm comes with readily available National
Institutes of Standards and Technology (NIST) test vectors
and can be easily scaled by changing the size and modes of
operation. In what follows, we provide some more details.

AES is an encryption standard adopted by the U.S gov-
ernment. The standard comprises three block ciphers, AES-
128, AES-192, and AES-256, adopted from a larger collection
originally published as Rijndael. Each AES cipher has a 128-
bit block size, with key sizes of 128, 192, and 256 bits,
respectively. The AES ciphers are extensively analyzed and
are now used worldwide as is the case with its predecessor,
the Data Encryption Standard (DES) [9].

The AES partial reconfiguration module (PRM) algo-
rithm was designed and tested separately from the HSDPRC.
For the implementations of the algorithm used, it passed
all bit-for-bit test vectors provided by NIST. In addition,
all of the IDPRC tests use the NIST test vectors used and
verified during development of the AES algorithm. This
ensured the accuracy of both the IDPRC implementation
and removed possible errors in the separately developed AES
implementations.

4.2. Partitioning the IDPRC Designs. The next section dis-
cusses how the IDPRC designs were mapped on the FPGA
fabric. This step in the partial reconfiguration process is
partitioning the design. Partitioning the design defines the
area of the die used for the partial reconfiguration regions,
the area used for the IDPRC and the bus macroplacement.
The bus macros provide the communication between the
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static and dynamic regions of the FPGA fabric. This process
uses the Xilinx PlanAhead tool.

4.2.1. Partitioning the Virtex-4 Design. The Virtex-4 IDPRC
design consists of three regions. The design has two PR
regions and a static region with the IDPRC. The two PR
regions have the same identical available FPGA resources.
Each of the cryptocore regions have different implementa-
tions of the AES algorithm.

Figure 6 shows the implementation of the design after
it has been placed and routed. The implementation in
the image has identical AES algorithms loaded into each
of the PR regions. The static design is the PowerPC 405
100 MHz system. Here, we note that only one of the PowerPC
processors is used out of the 2 available in the xc4vfx60ff1152.

4.2.2. Partitioning the Virtex-5 Design. The Virtex-5 IDPRC
designs consist of several PR regions. The PR regions have
the same identical available FPGA resources. In the image
above the PR regions on the Virtex-5 xc5v70FXT, we have
four cryptography cores and the IDPRC shown as a user logic
core. Each of the cryptography core regions reconfigured
with different implementations of the AES algorithm. The
user logic core is static and does not change.

Figure 7 shows the implementation of the design after
being placed and routed. The implementation in the image
has identical AES algorithms loaded into each of the PR
regions. The static design is the PowerPC 440 266 MHz
system.

5. Results

The test procedure and software applications give the user the
ability to actively monitor and test the IDPRC in the FPGA.
Figure 8 shows the test process.

The first step when testing the IDPRC system is to
configure the FPGA by writing the bitstream to the device.
After configuration, the EDK shell connects to the FPGA
subsystem. The connection to the subsystem uploads the
partial bitstreams to the external DDR2 memory. After all
of the partial bitstreams used for the test are loaded, the
software test application uploads to the processor. In a file-
based system, the load process would use a boot loader and
an embedded software application. After this process, the
processor and the FPGA are ready to start.

When the software first starts, it sends a message to the
user indicating the controller is operational. At this point,
the controller is in an idle state until the user issues a partial
reconfiguration command. The command is a number from
1 to 4 (up to 2 for Virtex-4). The number indicates the region
to reconfigure. Once the user enters a number and sends the
command to the IDPRC, the partial reconfiguration process
starts.

After performing the partial reconfiguration, a PRM
verification test checks the CRC values of the individual
configuration frames internal to the FPGA. The test performs
a readback operation via the ICAP port. The test procedure
verifies the HSDPRC, AES implementation, and IDPRC.

The final step is used to verify the operation of the AES
PRM by running a Built-in self-test (BIST). The self-test

Figure 6: Virtex-4 FPGA Editor Screen Capture 1. The diagram
clearly shows the two partial reconfiguration (PR) regions.

Figure 7: Virtex-5 FPGA Editor Screen Capture 2. The diagram
clearly shows the four PR regions.
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Table 2: HSDPRC write and read throughput. A DMA controller is used during dynamic partial reconfiguration. An interrupt is used to
signal completion. Despite the fact that they share the same ICAP frequency of 100 MHz with previous devices (Virex-II and Virtex-4), the
Virtex-5 results can be further improved to run at the maximum possible speed as described in Section 5.2.

Platform
Processor, System

Freq
Memory

Controller
TX

Freq
RX
Freq

ML410
(Virtex 4)

PowerPC 405,
200 MHz

MPMC 177.4 MB/s @100 MHz 180.0 MB/s @100 MHz

ML507
(Virtex 5)

MicroBlaze,
200 MHz

MPMC 178.6 MB/s @100 MHz 181.0 MB/s @100 MHz

ML507
(Virtex 5)

PowerPC 440,
200 MHz

PPC440MC 335.9 MB/s @100 MHz 340.4 MB/s @100 MHz

ML507
(Virtex 5)

PowerPC 440,
266 MHz

PPC440MC 418.5 MB/s @133 MHz 424.6 MB/s @133 MHz

writes and reads NIST encrypt and decrypt test vectors to
and from the AES PRM. The vectors communicate between
the IDPRC and the AES PRM through the bus macros. Here,
we note that the bus macros connect between the PLB and
AES PRM.

5.1. Reconfiguration Speed Measurements. Table 2 presents
the speed measured for the ICAP write and read throughput
using the proposed method. Dynamic partial reconfiguration
uses DMA controller.

To give perspective on the results, note that the ICAP
core is 4 bytes wide and operates at 100 MHz. Thus, at this
frequency, the maximum bandwidth that can be achieved is
at 3.2 Gbits/s or 400 MB/s. As seen in Table 2, the Virtex-5
implementation with the PPC440MC MPMC memory con-
troller gave the best results at 100 MHz. This implementation
gave 335.9 MB/s DPR speed which is at 84% of the maximum
of 400 MB/s that can be achieved. Furthermore, as we will
describe next, this can be significantly improved by proper
over-clocking.

The HSDPRC cores’ device utilization for a Virtex-5
is given in Table 3. The table shows only the size of the
HSDPRC core. To implement complete systems, other
resources such as the processor infrastructure and partial
reconfiguration regions are needed.

5.2. Overclocking with Active Feedback. As discussed in
Section 2.2.8, the Virtex-5 devices allow us to maximize the
performance of the ICAP using over-clocking. This system
uses feedback from the System Monitor IP to determine if
the device voltage and temperature parameters are within
nominal operating conditions.

When the ICAP is ran at the Xilinx specification over
PVT, the HSDPRC increased the speed of partial reconfig-
uration. To understand the performance limits using over-
clocking, recall that the ICAP core is 32 bits wide that runs
at the modified clock frequency. In this case, from Table 2,
we have a maximum clock speed of 133 MHz. Thus, at
this clock speed, the theoretically maximum possible speed
is at 532 MB/s. In our system, we measured a maximum

Load HSPRB
bitstream engine

to the board

Connect to the
system via XMD

Transfer the PR
regions from the
host computer to

DDR memory

Load PowerPC
with compiled C

program

Execute PR test
application

Start running C
code on the

PowerPC

Figure 8: Test procedure state flow diagram.
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Table 3: HSDPRC device utilization for Virtex-5.

Virtex-5 device utilization for HSDPRC.

Number of ICAPs 1

Number of RAMB18X2SDPs 1

Number of slice registers 1085

Number used as flip flops 1082

Number used as Latches 3

Number of slice LUTS 923

Number of slice LUT-flip 1530

Flop pairs

DPR speed of 418.5 MB/s and readback at 424.6 MB/s or
approximately 3.4 Gbits/s.

6. Conclusion

This paper presented a high-speed DPR system that avoids
the use of the PLB bus during DPR bitstream download
to the FPGA. The approach allows the processor’s full
access to other peripherals during most of the DPR process.
Furthermore, the paper summarized an active feedback
subsystem that allows over-clocking while guaranteeing that
the FPGA operates within safe levels.

In terms of performance, the proposed system achieved
a DPR rate of 3.4 Gigabits/s. This represents the highest DPR
rate achieved so far.
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